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SUMMARY
To navigate effectively, we must represent information about our location in the environment. Traditional
research highlights the role of the hippocampal complex in this process. Spurred by recent research
highlighting the widespread cortical encoding of cognitive and motor variables previously thought to have
localized function, we hypothesized that navigational variables would be likewise encoded widely, especially
in the prefrontal cortex, which is associated with volitional behavior. We recorded neural activity from six
prefrontal regions while macaques performed a foraging task in an open enclosure. In all regions, we found
strong encoding of allocentric position, allocentric head direction, boundary distance, and linear and angular
velocity. These encodings were not accounted for by distance, time to reward, or motor factors. The strength
of coding of all variables increased along a ventral-to-dorsal gradient. Together, these results argue that
encoding of navigational variables is not localized to the hippocampus and support the hypothesis that
navigation is continuous with other forms of flexible cognition in the service of action.
INTRODUCTION

To move in the world, organisms must represent where they are,

where they are going, and where important features in the world

are. In other words, they must navigate. The majority of research

highlights the role of the hippocampus and adjacent structures in

navigation.1–6 This work supports amodular view of navigation—

that is, that navigation results from computations in anatomically

circumscribed circuits.7,8 An alternative view is that navigation

relies on a suite of more general cognitive abilities, including

generalized mapping functions, such as the encoding of task

structure and latent environmental variables.

The modular approach to understanding functional neuro-

anatomy has been challenged by a growing set of studies that

highlight the broad distribution of variables. These include motor

signals9–12 and reward signals.13–15 Such findings raise the

possibility that navigation may also be distributed.16–19 Thus,

evidence of widespread distribution of navigational codes would

support their posited role in anchoring elements of cognition to

maps of embodied space. In this view, navigation is a special

case of the more general problem of representing conceptual

linkages.5–7,20,21

A growing body of research suggests that, at least in rodents,

navigational functions exist outside the hippocampal complex,

including within prefrontal areas.22,23 For example, neurons in

somatosensory cortex, orbitofrontal cortex (OFC), and piriform

cortex encode current and future spatial positions, as well as
the location of targets in the environment.24–27 However, the

distinct navigational strategies and preferred sensory modalities

in rodents may not generalize to primates. Moreover, the extent

to which rodent prefrontal areas serve as functional homologies

to those of primates remains unclear.28

Theories about the function of the prefrontal cortex (PFC)

seldom involve a navigational role. Instead, they typically involve

functions that indirectlysupport navigation, includingcontrol ofac-

tion, planning, resolving conflict, and comparing values.17,18,29,30

Often, however, these areas supportmore abstractmapping func-

tions that augment space by anchoring to it an executive-control-

type function. For example, the roles for space typically assigned

to the PFC include the encoding of goal location, navigational ac-

tion planning and landmark vector representations, and spatial

working memory.19,20,31–34 Yet, the direct involvement of PFC in

navigational encoding remains unclear.

We developed a novel naturalistic paradigm for recording neu-

ral and behavioral data from freely navigating macaques.35 As

macaques performed a freely moving foraging task, we recorded

neuronal activity in six regions: OFC, dorsal anterior cingulate

cortex (dACC), supplementary motor area (SMA), ventrolateral

PFC (vlPFC), dorsolateral PFC (dlPFC), and dorsal premotor

cortex (PMd). In all six, we found selectivity for navigational

variables: allocentric position, allocentric head orientation,

egocentric boundary distance, angular velocity, and linear veloc-

ity. Notably, this navigational tuning is not place-cell-like.

Instead, it has a more unstructured pattern, even as it contains
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navigational information. Proportions of neurons responding

were roughly the same as those encoding non-navigational

variables, such as reward number and feeder identity. Neurons

encoding navigational variables did not form functionally

specialized subpopulations and these encodings were not ac-

counted for by distance, time to reward, or motor factors. Finally,

we found that distributed encoding of both navigational and non-

navigational task variables followed functional gradients in which

stronger coding was found in more dorsal areas. Together these

results support the idea that navigational functions are sup-

ported by widespread activity of neurons, including those in

several prefrontal structures.

RESULTS

Behavioral and neural recordings
Rhesusmacaques performed a novel freely moving foraging task

in a large (245 cm 3 245 cm 3 275 cm) enclosure with four bar-

rels and up to four reward stations (Figures 1A and 1B; STAR

Methods). If the subject approached a station (or ‘‘patch’’) and

pressed the lever, a juice tube provided preferred liquid reward

(1.5 mL) and the display changed from blue to white with a green

cross (Figure 1C). After 2 s, the screen returned to blue and the

subject could repeat the process. After the fifth lever press, the

patch deactivated for 3 min. We used OpenMonkeyStudio35 to

track subjects in space. We recorded neural activity from 128

independently moveable electrodes (Figure 1D; STARMethods).

We recorded 8,276 neurons over 196 sessions from six

structures in the PFC (Figure 1E).

Activity of prefrontal neurons can be fitted by a linear-
nonlinear encoding model
We used a linear-nonlinear Poisson-distributed generalized

additivemodel (LN-GAM) toestimate tuning functions for 8distinct

variables developed by Hardcastle et al.36 and used by Laurens

etal.,37Vinepinskyetal.,38Maoetal.,39andYooetal.,40,41: (1) lever

pressing (versus not pressing, equivalent to reward); (2) position of

thebodyon thegroundplane; (3) headelevation; (4) compass-wise

head direction; (5) head tilt; (6) distance to enclosure boundaries;

(7) angular velocity (speed of change in subjects’ compass-wise

orientation); and (8) linear velocityof the subject’s body. These var-

iables were used in previous studies of navigational tuning in the

macaque hippocampus and were defined the same way.37,39

Note that this procedure includes a cross-validation procedure

that controls for false positives by dividing each session into 10

partitions andperforming5-fold cross-validationwithin eachparti-

tion. To characterize the encoding of basic navigational variables,

we considered the prevalence of tuning to each variable in turn

across neurons in each structure (see Figure S1 and Table S1 for

a summary).

Neurons in all six regions encode position
To quantify occupancy, we segmented the surface area of the

arena into 36–50 cm2 bins. During each session, we computed

the amount of time when head position was within each bin (Fig-

ure 2A). Subjects visited the full range of the arena height, though

they tended to favor an elevation between 100 and 200 cm.

We defined tuning to 3D position as the simultaneous selec-

tivity to the head’s 2D position (x and y axes) (Figure 1A) and
2 Current Biology 33, 1–11, August 21, 2023
elevation (z axis).39 Neurons in all six regions encode 3D position.

For example, neuronOFC.143 showed increased firing when the

subject entered the northeast corner (Figure 2B); neuron

dACC.70 showed increased firing when the subject entered

the southeast corner (Figure 2C). Responses of six neurons are

shown in Figures 2B–2G and S2.

Spatial selectivity is common in all regions recorded. In OFC,

42.87% of neurons showed selectivity to position (Y: 50.13%;

W: 39.59%). Overall, 21.35% (n = 259/1,213) carry information

about 3D position (p < 0.0001, binomial test). This pattern was

observed in both subjects (subjects Y and W) individually (Y:

24.93%; W: 19.74%). An additional 9.65% of OFC neurons

were tuned to 2D position, but not to head elevation (Y:

12.22%; W: 8.49%; p < 0.0001); 11.87% of OFC neurons were

tuned to head elevation only (Y: 12.99%; W: 11.36%). Indeed,

a statistically significant proportion of neurons showed selec-

tivity for 3D position in all regions (Figure 2H). Note that in report-

ing the percent of neurons modulated by this variable, we do not

mean to imply that this is the only variable that the neurons

encode. Indeed, we later show that this is not true. To confirm

tuning stability, we computed the correlation between encoding

magnitudes for each neuron during the first and second halves of

the session.We found high correlations in all six structures (OFC:

r = 0.903; dACC: r = 0.865; SMA: r = 0.504; vlPFC: r = 0.757;

dlPFC: r = 0.608; PMd: r = 0.563; p < 0.0001 in all cases).

Neurons in all six regions encode allocentric head
direction
Head direction tuning has been observed in hippocampal

formation and associated thalamic nuclei, including in ma-

caques.39,42,43 To confirm that subjects’ head positions varied,

we segmented the allocentric yaw angles into 6� bins (n = 60

bins, from 0� to 360�, 0� representing east). For each bin, during

each session, we computed the amount of time during which

head direction (yaw) was within each bin (Figure 3A). We did

the same with pitch. Subjects favored (an average of 63.61% ±

0.59% of the session) angles between 72� and 132� (Figure 3A).

Subjects overwhelmingly favored (an average of 69.51% ±

0.09% of the session) orienting their heads at an angle between

60� and 120� (Figure 3A). We found that individual neurons in the

PFC encode head direction. For example, neuron OFC.276

showed increased firing rates for northeast head direction

(Figure 3B). Responses of six example neurons are shown in

Figures 3D–3G.

Head direction selectivity was common. In OFC, 43.53% of

neurons showed selectivity to 3D orientation (Y: 47.48%; W:

41.75%). Overall, 21.12% (n = 256/1,213) carry information

about 3D orientation (p < 0.0001; Y: 26.52%; W: 18.66%);

11.05% of OFC neurons were tuned to head direction but not

to head tilt (Y: 9.55%; W: 11.72%) and 11.38% were tuned to

head tilt (Y: 11.41%;W: 11.36%).We found similar results across

all five other structures (Figure 3H). To confirm stability, we

computed correlation between encoding magnitudes during

the first and second halves of the session.We found positive cor-

relations in all structures (OFC: r = 0.922; dACC: r = 0.846; SMA:

r = 0.504; vlPFC: r = 0.774; dlPFC: r = 0.624; PMd: r = 0.548;

p < 0.0001 in all cases). These findings suggest that allocentric

head direction is encoded in all six prefrontal regions and this en-

coding is stable within sessions.



Figure 1. Behavior and neural recordings
(A) Schematic of the arena. Checkerboard patterns indicate floor. Black rectangles denote cameras. Blue rectangles indicate the approximate locations of the

feeding stations. The lower panel shows a cartoon depiction of the feeding station, with the display monitor at the center showing solid blue.

(B) Photograph of the arena.

(C) Schematic of the available, novel freely moving foraging task.

(D) 3D model of the recording system superimposed on a subject’s cranium.

(E) 3D rendering of the prefrontal areas from which neural data were recorded. Bars: number of neurons recorded from each region.
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Figure 2. Allocentric position encoding

(A) Occupancy heat maps depicting the average proportion of time spent in each 50 cm2 bin across sessions. X: E-W axis of the arena; Y: N-S axis. Color:

proportion of the session time in each bin; left: rectangular screens represent the approximate location of each patch feeder and white asterisks denote which

ones were on top of barrels. Right, occupancy plot for elevation axis.

(B–G) Rate maps of a sample neuron from each structure that was determined to be significantly tuned to 3D allocentric position (2D position and tracked height,

simultaneously). Color: neural activity, computed as the occupancy-normalized firing rate (spikes/s); size, occupancy, computed as the time spent (s) in a bin.

(H) The proportion of total recorded neurons in each structure (collapsed across subjects) tuned to 3D position (XYZ), 2D position (XY only), tracked height (Z only),

single selectivity to 2D position alone, and single selectivity to height alone. Red line: chance. Bars indicate SEM.

See also Figure S2.
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Figure 3. Allocentric head orientation coding in volumetric space

(A) Occupancy histograms depicting the distribution across sessions of the proportion of the total orientations recorded. R, proportion orientation bins occupied

at least once during a session; theta: orientation.

(B–G) Polar rate maps of a sample neuron with significant tuning. R, occupancy-normalized firing rate (spikes/s).

(H) Proportion of total recorded neurons in each structure (collapsed across subjects) tuned to 3D orientation (Y, yaw; P, pitch; and R, roll), head direction (yaw

only), head tilt (pitch and roll), single selectivity to head direction, and single selectivity to head tilt. Red line: chance.
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Encoding of boundary distance, linear velocity, and
angular velocity
We found neural encoding of egocentric boundary distance,

linear velocity, and angular velocity in all six regions39 (Figure 4).

Egocentric boundary distance is a subject’s current distance to

the nearest boundary of the environment.39 A significant propor-

tion of neurons in all six regions show this encoding (Figures 4C,
4D, and 5A); tuning in the first and second halves of the session

were correlated (OFC: r = 0.94; dACC: r = 0.93; SMA: r = 0.73;

vlPFC: r = 0.86; dlPFC: r = 0.78; PMd: r = 0.74; p < 0.0001 in

all cases).

Linear velocity is the derivative of position (converted to cm/s).

Significant portions of neurons encoded linear velocity in all

areas (Figures 4E and 5A); first/second half coding was
Current Biology 33, 1–11, August 21, 2023 5



Figure 4. Example tuning curves for neurons encoding angular velocity, egocentric boundary distance, and linear velocity

(A and B) The within-session distribution of angular velocities (A) and the corresponding rate maps of a sample neuron from each brain area with significant tuning

(B).

(C and D) The within-session distribution of egocentric boundary distance (C) and the corresponding rate maps of a sample neuron with significant tuning (D).

(E) The tuning curve of a sample neuron with significant tuning to linear velocity.

See also Figure S3.
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correlated (OFC: r = 0.865; dACC: r = 0.865; SMA: r = 0.518;

vlPFC: r = 0.757; dlPFC: r = 0.624; PMd: r = 0.548; p < 0.0001

in all cases).

We defined angular velocity as the change in orientation along

yaw and pitch angles. We found a significant encoding propor-

tion in all structures (p < 0.0001 in all cases) (Figures 4A, 4B,

and 5A), and positive first/second half correlations (OFC: r =

0.884; dACC: r = 0.865; SMA: r = 0.518; vlPFC: r = 0.774; dlPFC:

r = 0.608; PMd: r = 0.563; p < 0.0001 in all cases). Figure S3 offers

a visualization of the overlap between encoding of different

navigational variables across all brain areas.

Relationship between encoding of navigational
variables and task variables
Neurons in the PFC carry information related to key behavioral

variables, such as reward and choice.44–46 We wondered how

robust encoding of navigational variables relates to the more
6 Current Biology 33, 1–11, August 21, 2023
familiar non-navigational task-variable encoding methodology.

We computed neural encoding for five task variables: (1) lever

pressing (versus not pressing—note that this is confounded

with reward receipt); (2) number of rewards remaining

throughout the environment; (3) number of rewards remaining

at the current patch; (4) stay/leave choice after the previous trial;

and (5) the predicted probability of stay/leave at each press given

the number of presses remaining through the environment.

We found in OFC that 21.19% (n = 257/1,213 neurons) showed

selectivity to lever pressing. This proportion is significantly

greater than chance (p < 0.0001, binomial test). We found similar

and significant proportions in both subjects individually (Y:

22.55%, W: 20.69%). These proportions are roughly in line with

the proportion observed in this region in other tasks.47 We found

similar results in all structures (Figure 5B; Tables S2 and S3).

To measure variables 2–5, we segmented each lever press

into individual trials, computed the average firing rates for each



Figure 5. Prefrontal encoding of other navigational and non-naviga-

tional variables

(A) A summary of the proportion of total recorded neurons tuned to egocentric

boundary distance, angular velocity, and linear velocity collapsed across

subjects.

(B) The proportion of neurons significantly tuned to task-related variables.

Each bar indicates the proportion of tuned neurons in one of the six structures.

Red lines in (A) and (B) show chance levels for ɑ = 0.05. nSMA = 280, nPMd =

2,017, ndlPFC = 1,591, nvlPFC = 1,756, ndACC = 1,419, nOFC = 1,213.

See also Tables S2 and S3.
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neuron per lever press and regressed the averages on the four

other task variables (comparable with the approach expected

from a chaired-task paradigm). We found that a significant pro-

portion of neurons in each region encoded the number of re-

wards remaining across the environment (Figure 5B). We found

similar results for stay/leave choice (Figure 5B).

Tomeasure the probability of leaving a given patch, we fitted a

sigmoid function to choice by regressing the total number of

presses remaining across all patches in the environment against

the stay/leave decision (see STAR Methods). We then used the

fitted function to estimate the probability of staying/leaving,

based on the total number of presses available in the arena.

We found a significant proportion of neurons encoded the prob-

ability of leaving the current patch, controlling for the rewards re-

maining at the current patch (Figure 5B).

Finally, we found that a significant proportion of neurons

encoded the probability of leaving the current patch, while

controlling for the number of rewards remaining at the current

patch in OFC, dACC, vlPFC, and dlPFC (Figure 5B). The propor-

tion of neurons encoding the number of remaining rewards at

the current patch failed to reach significance in the SMA

(6.64%, p = 0.07, binomial test) and PMd (5.33%, p = 0.25, bino-

mial test).
Variable encoding is distributed randomly among
neurons within structures
To determine whether navigational and task variables are en-

coded in distinct subpopulations, we used elliptical projection

angle index of response similarity (ePAIRS).48 We used the LN-

GAM-generated variableweights to calculate estimatedmarginal

means (EMMs), reduced the dimensionality, and computed a

cluster index (Cidx) from the 10best explanatory principal compo-

nents (see STARMethods and Raposo et al.49). The cluster index

uses the angles between neural response vectors to compute

similarities in tuning properties, so neurons that respond along

the same dimensions will be categorized as more similar (even

if their tuning curves are different) than neurons that respond

along orthogonal dimensions. Given perfect clustering (Cidx =

1), the angle of each point is identical to its nearest neighbors.

Conversely, given a perfectly random distribution of variables,

Cidx = 0. A Cidx < 0 would indicate a smoother distribution in var-

iable encoding than would be generated by the data-derived null

distribution.49We found significantly negative ePAIRS score in all

structures (Figure 6A). This result provides evidence against the

hypothesis that neurons are clustered into functional subtypes.

One advantage of multiplexing is that it allows the same pop-

ulation of neurons to meet distinct behavioral demands, while

continuing to support simple linear combinations for down-

stream decoding.49,50 In one study, the authors demonstrated

that, despite the category-free coding they observed in the pos-

terior parietal cortex, it was possible to nonetheless perform a

linear readout of firing to estimate task variables, demonstrating

that category-free coding does not result in a sacrifice in fidel-

ity.49 To confirm that the same applies to our own data, we

performed the same control analysis described in that study.

To do so, we asked whether we could use a linear decoder to

accurately predict the position of the animal, based on the firing

rates across the population (see STARMethods).We segmented

the arena into 9 zones, so chance-level decoding accuracy was

11.11% (i.e., 1/9). We compared the decoding accuracy from

population activity in each structure with chance (correcting for

multiple comparisons, a = 0.0083). Position was decodable

from population neural activity in all structures (Figure 6B). These

analyses were confirmed for both subjects individually (data not

shown).

Coding of all measured variables grows along a ventral-
to-dorsal gradient
We previously found a ventral-to-dorsal gradient in encoding of

economic variables along the medial wall of the PFC.46 We

asked if a similar gradient is observed for navigational variables.

We identified two distinct potential ventral-to-dorsal anatomical

gradients in our data: a medial (OFC/ dACC / SMA/ PMd)

and a lateral series (OFC/ vlPFC/ dlPFC/ PMd). We found

that position encoding increases along both gradients. Formally,

the regression weight of response strength, computed for each

neuron, increased with structure’s hierarchical position (medial:

Spearman r2 = 0.067; lateral: r2 = 0.051; p < 0.0001 in both

cases). We observed the same pattern using depth of electrode

instead of brain areas (Figure 7, medial: Pearson r2 = 0.055;

lateral: r2 = 0.065; p < 0.0001 in both cases).

We found a similar gradient for head direction with brain area

(medial: r2 = 0.099; lateral: r2 = 0.078; p < 0.0001) and with
Current Biology 33, 1–11, August 21, 2023 7



Figure 6. Prefrontal encoding of naviga-

tional and task variables is distributed

randomly among regional neurons

(A) Weights for the first and second principal

components from both subjects combined, which

was produced by reducing the dimensionality of

the LN-GAM-derived navigational variable encod-

ing. The roughly uniform circular distributions

indicate a lack of encoding-based clustering in

N-dimensional principal component space. The

inlaid score indicated the clustering index from the

ePAIRS analysis and an asterisk denotes signifi-

cance at p < 0.05.

(B) Accuracy of a linear decoder, a regression-

based support-vector machine, in using popula-

tion neural activity to decode the 2D position of the

subject. Each bar indicates the accuracy for de-

coding subject position based on neural activity in

each structure. Gray: shuffled values. Bars: stan-

dard error across bootstrapped iterations. Red

line, chance.
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electrode depth (medial: r2 = 0.081; lateral: r2 = 0.095;

p < 0.0001). We found similar results for egocentric boundary

distance (medial: r2 = 0.125; lateral: r2 = 0.099; p < 0.0001)

and electrode depth (medial series: r2 = 0.098; lateral: r2 =

0.076; p < 0.0001). Likewise for angular velocity (medial: r2 =

0.125; lateral: r2 = 0.099; p < 0.0001) and electrode depth

(medial: r2 = 0.098; lateral: r2 = 0.076; p < 0.0001); likewise

for linear velocity (medial: r2 = 0.118; lateral: r2 = 0.099;

p < 0.0001) and electrode depth (medial: r2 = 0.097; lateral:

r2 = 0.071; p < 0.0001).

We found similar patterns for our non-navigational variables.

Encoding of stay/leave choice probability significantly increased

along both gradients (medial: r2 = 0.071; lateral: r2 = 0.069;

p < 0.0001). Unsigned weight of reward encoding, from the

LN-GAM, increased along both (medial: r2 = 0.081; lateral:

r2 = 0.067; p < 0.0001). These patterns were significant with

electrode depth (p < 0.0001 in all cases). These results extend

our previous findings of a ventral-to-dorsal gradient of encoding

for economic variables to navigational variables.

DISCUSSION

In freely moving macaques, single neurons in six prefrontal areas

encode several navigational variables. Navigational and non-

navigational variables are encoded in the same set of neurons,

using mixed selectivity.49–51 The widespread encoding of navi-

gational variables outside of the hippocampus suggests that

processing of navigational information may not be localized.

These results tie into emerging theories that see navigation as

a special case of associative mapping.5–7,20,21 Indeed naviga-

tional information may be found in prefrontal regions because

of their more general role as flexible encoders of associative

information.

It is not clear whether these signals are generated within the

regions we recorded, or whether they are generated elsewhere.

Given the broad interconnections with prefrontal regions, it may
8 Current Biology 33, 1–11, August 21, 2023
be inevitable that information like this is observed broadly. Unfor-

tunately, we cannot ascertain whether these navigational vari-

ables are either endogenously or exogenously generated (or

some combination). However, we do not believe it is logically

necessary that the information will be observed everywhere.

There are plentiful examples of cases in which information is

generated in one region, but not shared in others. As such, it

seems unlikely that different parts of the PFC achieve a balance

of encoding due to sharing of information. Having said that, we

must also be careful about functional interpretations—the fact

that we observe widespread correlates of navigational informa-

tion in these regions does not prove they play a causal role in

navigation.

Several reports in rodents have identified encoding of naviga-

tional variables beyond the hippocampal complex.24–27 Likewise,

a small literature in humans emphasizes the potential roles of non-

hippocampal regions, especially prefrontal ones, in navigation.22

Our report adds to this literature. Some of these results have pro-

posed that navigational information outside of the hippocampus

may play a distinct role, such as linking space to value or changing

plans; however, existing data are also consistent with the hypoth-

esis that hippocampal and prefrontal regions play largely overlap-

ping roles. Our results imply that navigational information can be

found in the PFC, just as it can be found in the hippocampal com-

plex. It isworth emphasizing that the tuning for place thatwefind is

not place-cell-like. In particular, it is not generally localized to a sin-

gle position in space, nor does it have other hallmarks of place

cells. On the other hand, it does clearly contain information about

place, and it does resemble responses of nongrid cells in medial

entorhinal cortex. It is likely, in our view, that these differences

reflect differences in the way space is encoded in prefrontal re-

gions and in hippocampus. It is worth noting, however, that the

spread-out responsesweobserve doqualitatively resemble those

measured in two recent studies of primate hippocampus,39,52

suggesting that thedifferencemaybe,at least inpart, a speciesdif-

ference, rather than a purely real one.



Figure 7. Ventral-dorsal gradient of navigational tuning

Average encoding strength as a function of electrode position for both sub-

jects combined. Bubbles correspond to position bins. Color, strength of en-

coding. Size, number of neurons in bin.
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We observe no evidence for separate populations encoding

navigational and non-navigational information. These results

are important because they indicate that navigational encoding

is not part of specialized patches or neural subregions, nor of

distinct neurons that were inaccessible in prior studies. This

result is consistent with the growing body of research indicating

that mixed selectivity is widespread and robust.49,51,53 This

mixed selectivity may allow for flexible yet robust coding and

may allow for rapid recombination of information.50

The ventral-to-dorsal gradient in coding strength we report

here resembles one we have found for the medial wall.46 Why

would we see stronger encoding more dorsally? We propose

that information encoded in a format that is more accessible to

the motor system (and likewise to our decoding analyses) in

more ventral structures. In other words, more dorsal structures

show information in a more untangled manner.54 Conversely,

these data argue against a functionally modular arrangement,

in which each area has a specific nameable function, such as

‘‘evaluate,’’ ‘‘compare,’’ and ‘‘control.’’ At the same time, these

data argue against a purely distributed view, in which all informa-

tion is present in the same form across the PFC. Instead, they

support a hierarchical view.17,18,45,55–57

One interesting feature of our data is that firing rates are much

lower than those typically observed in standard primate physi-

ology experiments, and lower than those often reported in rodent

studies of the navigational system. We suspect that the discrep-

ancy is likely to reflect genuine differences in how neurons fire

and differences in firing rate for neurons selected online and off-

line. Specifically, we have noticed that as we move toward more

naturalistic tasks, firing rates tend to decrease. Indeed, in our

informal observations of these same subjects performing

chaired tasks with the same recording system, firing rates are

lower in our open-field paradigm. Moreover, we believe that

when selecting neurons for recording, physiologists (including

ourselves) tend to select higher tonically active neurons, simply

because these are the ones we are more likely to notice. It
remains an open question which of these two factors is more

important, and whether other factors contribute as well.

One limitation of the present study is that we did not measure

gaze direction. As such, we could not perform a disambiguation

between tuning to facing location (where in the room the sub-

ject’s head is facing) and spatial view (where in the room the sub-

ject’s eyes are looking). In a recent, important paper, Mao et al.39

characterized navigational tuning in the hippocampus of freely

moving primates. They showed the results of both a traditional

tuning curve and the LN-GAM approach used here. The tradi-

tional tuning curve approach, using a single fitted variable at a

time, yielded tuned proportions analogous to those commonly

reported in the rodent hippocampus. Critically, however, the

LN-GAM approach included a variable for ‘‘facing location’’

and ‘‘spatial view’’ within the large, simultaneously fitted model.

They demonstrated that hippocampal tuning was predominantly

driven by facing location rather than spatial view, which under-

scores the importance of performing this disambiguation (see

also Killian et al.58 and Jacobs et al.59). In future studies we

hope to investigate the relationship between facing location

and spatial view.

Another limitation is that we could not include 4 of the 5 non-

navigational variables in the LN-GAM (rewards remaining at the

current patch, rewards remaining in the environment, stay/leave

choice, and stay/leave probability); therefore, we could not

perform any direct analyses to relate navigational encoding to

the broader non-navigational encoding strengths beyond the

one included in the LN-GAM (lever pressing). One further

limitation is that the lack of a rigid trial structure restricted our

ability to compare navigational variable encoding when subjects

were task-engaged versus not engaged. We conservatively

defined a trial as the 2-s epoch after a lever press, a period in

which subjects exhibited limited range of motion and which

was highly confounded with reward receipt.

Ultimately, we believe that these results provide a strong argu-

ment for the use of naturalistic tasks. It is well known that natural

behavior is continuous, complex (multieffector), embedded (in

an environment), and seldom isolated from other competing

demands on attention and planning.60–65 Nonetheless, most lab-

oratory tasks, including the great bulk of our own past work,

does not hew to these principles. Instead, they use overly simpli-

fied laboratory tasks. Simple laboratory tasks have great bene-

fits, especially in tractability, but they have disadvantages. One

is that they often do not manipulate variables that may, if manip-

ulated, be found to be major drivers of neural activity. Ignoring

that tuning may in turn obscure the broader and more general

functions of neurons in regions of interest.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal model
Two male rhesus macaques (Macaca mulatta) served as subjects. Animals were habituated to laboratory conditions, trained to enter

and exit an open arena, and then trained to operate water dispensers. The University Committee on Animal Resources at the

University of Minnesota approved all animal procedures. Animal procedures were designed and conducted in compliance with

the Public Health Service’s Guide for the Care and Use of Animals and approved by the institutional animal care and use committee

(IACUC) of the University of Minnesota.

METHOD DETAILS

Surgical procedures
We placed a cranium adherent form-fitted Gray Matter (Gray Matter Research) recording chamber and a 128-channel microdrive

recording system over the area of interest. We used the same approach asMao et al.39 to verify sites. Specifically, we used CT scans

which were compared to corresponding CT studies performed following surgical implantation and placement of the electrodes. The

hyperdense appearance of electrodes using the post-recording CT allowed us to verify that electrodes followed the trajectory of the

pre-operative plan. In both cases (that is, for both subjects), the results of theCTshow that thiswas the case. Specifically, these results

indicate that our procedures providedco-registrationwith anerror of less than 0.5mm.Since electrodeswere advanced incrementally

not all locations are verified using this approach, but positions could be validly inferred using interpolation. In addition, we performed a

second complementary method that also confirmed placement of the electrodes. Specifically, as we have done inmany past studies,

as we moved the electrodes down into the brain, we made note of the auditorily detectable change from gray to white matter, and

reconciled this informationwith our preoperative CT scans. In all cases, the twomatched. Animals received analgesics and antibiotics

after all procedures. Procedureswere designed and conducted in compliancewith the Public Health Service’s Guide for the Care and

Use of Animals and approved by the institutional animal care and use committee (IACUC) of the University of Minnesota.

Recording sites
We approached our brain regions by controlled and monitored advancement of individual electrodes, through reconciliation of

measured thread-count against postoperative CT images. The implanted microdrive was connected through jumper cables and a
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head stage to a removable data logger (SpikeGadgets). The data logger was wirelessly triggered to store neural recordings onto a

removable memory card from which it was then extracted at the end of each session.

We definedOFC as lying within the coronal planes situated between 39.6 and 23.9 mm rostral to the central sulcus, the horizontal

planes situated between 23.3 and 45.7mm from the brain’s dorsal surface, and the sagittal planes between 1.3 and 22.1mm from the

medial wall.

We defined dACC as lying within the coronal planes situated between 33.5 and 7.4 mm rostral to the central sulcus, the horizontal

planes situated between 11.1 and 38.5 mm from the brain’s dorsal surface, and the sagittal planes between 0.4 and 6.7 mm from the

medial wall.

We defined SMA as lying within the coronal planes situated between 30.4 and 13.1 mm rostral to the central sulcus, the horizontal

planes situated between 16.2 and 34.3 mm from the brain’s dorsal surface, and the sagittal planes between 0.4 and 6.7 mm from the

medial wall.

We defined vlPFC as lying within the coronal planes situated between 46.8 and 16.8mm rostral to the central sulcus, the horizontal

planes situated between 16.2 and 47.2mm from the brain’s dorsal surface, and the sagittal planes between 1.1 and 19.4mm from the

medial wall.

We defined dlPFC as lying within the coronal planes situated between 36.4 and 12.3mm rostral to the central sulcus, the horizontal

planes situated between 17.4 and 48.9mm from the brain’s dorsal surface, and the sagittal planes between 1.1 and 19.4mm from the

medial wall.

We defined PMd as lying within the coronal planes situated between 26.7 and 2.9 mm rostral to the central sulcus, the horizontal

planes situated between 6.8 and 37.9 mm from the brain’s dorsal surface, and the sagittal planes between 1.9 and 23.7 mm from the

medial wall.

Behavioral task
Each patch delivered a fixed amount of 1.5mL. The first four presses were rewardedwith fluid delivery. The fifth was unrewarded and

led to a 3-min deactivation. No reset or deactivation was applied if the animal left the patch. A patch was only reset if the subject

pressed the lever a fifth time and waited 3 min. A trial consisted of a lever press at time 0, which changed the display to white

with a green plus-sign in the center (0-2 seconds), an auditory cue was played (0-2 seconds), and a solenoid opened to dispense

reward (0-1 second). After dispensing reward, the solenoid closed, the auditory cue ended, and the green plus-sign disappeared.

The screen remained white for 2 additional seconds (2-4 seconds) before the screen turned blue again (total trial time = 4 seconds).

The fifth lever press was followed by a white screen. Prior and concurrent chaired task training of these subjects included two risky

choice tasks66–70 and a simpler choice task.71,72

QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral analysis
There were 5-7 patch events recorded for each patch engagement: lever press, screen off (set to white), screen/auditory reward cue

(rewarded presses only), solenoid open (rewarded presses only), solenoid close (rewarded presses only), screen off (set to white),

timeout (deactivation press only), and screen reset. Lever press events that led to a reward were used to analyze the reward encod-

ing. The final (unrewarded) press in the series was behaviorally special, so it was not suitable for use in comparison with the rewarded

presses. We verified the accuracy of our system to subtle head movements in a previous manuscript.35

To measure the 3 angular axes of the head, we first centered the extracted nose and neck coordinates, placing the estimated head

position at the volumetric axis-origin. For each frame, we applied Euler angle transformations on the head-fixed coplanar points to

determine the yaw, pitch and roll angles between the origin and the current head orientation. We defined the head direction variable

as a 1D vector for the yaw angle of the head.We defined the head tilt variable as a 2D vector consisting of the pitch and roll angles.We

measured egocentric boundary in polar coordinates, defined as a 2D variable consisting of the radial distance between the subject

and the nearest wall on the azimuthal plane and the angle of the subject relative to the center of the room. To measure angular

velocity, we computed a two-dimensional variable, where the first dimension reflects the rotation speed of the head (degrees/sec-

ond) along the yaw angle and the second dimension reflects the rotation along the pitch angle. To measure linear velocity, we

computed the distance traveled (centimeters/second) in any direction.

Linear-Nonlinear Poisson-distributed Generalized Additive Model
We adapted a previously developed approach.36,37,39–41,73,74 Briefly, recordings and variables were binned into 100-ms time bins.

Neural data were fitted to multiple, nested linear-nonlinear-Poisson distributed generalized additive models. Data were divided into

10 tranches across the session. Within each, model estimates were computed using 5-fold cross-validation, by dividing each into

5 more subtranches. The process was repeated for each one. The estimated log-likelihood quantified the model performance, and

the distribution of log-likelihood estimates was compared to a null distribution (one-sided Wilcoxon signed rank test, alpha = 0.05).

The best-fitting model was selected using an optimized forward search. Models containing only one variable (1st order models)

were fitted first. If these models performed better than the null, models containing two variables (2nd order models) were fitted.

The process was repeated until the performance of the newly fitted model no longer improved over the previous. A neuron was cate-

gorized as tuned to a given variable if that variable was includedwithin the best-fitting model. We use the proportion of neurons tuned
Current Biology 33, 1–11.e1–e3, August 21, 2023 e2
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as a population level analysis because it suggests that a variable may be a particularly important feature of the neural code and that

the population activity may be important for decoding that variable (as we show in the decoding analysis for Figure 6).75,76 Since our

significance threshold, alpha, was set at 0.05 for a one-sided Wilcoxon signed rank test, we consider any proportion of neurons

above 5% to be significant (see Figure S1 and Table S1 for a summary of variable tuning). Importantly, the additive process for

multiple terms was incorporated within the exponentiation used to compute the estimated firing, thus making selectivity to multiple

variables a conjunctive (nonlinear) estimate. To assess tuning stability across a session, we computed Pearson’s correlation between

encoding magnitudes for each neuron to a given variable during the first and second half of the session.

We validated the model on our data through a series of controls. After fitting the LN-GAMmodels, we randomly selected a neuron

that was not significantly tuned to any combination of variables. We modified the spike train for that neuron to include a single

spurious high firing event, once in each of 3 time periods. We also selected both 10 and 100 bins from each of 3 time periods to insert

spurious high firing. Finally, we time-locked the insertion of 1, 10, and 100 simulated spurious events to consistent instances of the

tracked position. We repeated this process across 20 randomly selected, untuned neurons from each structure, generating a set of

1200 synthetic datasets. We fitted each of these simulated time series against the original variables. We then determined the

proportion of fitting processes that resulted in significant tuning. Only 8.08% (n = 97/1200) of control sets generated a statistically

significant fit. These controls confirmed that the best-fitting models were not being influenced by random or spurious events, and

instead reflected reliable tuning to the selected variables.

Stay/leave choice probability and neural encoding
We adapted an approach commonly used in traditional neuroeconomics paradigms.23,46,73 We leveraged the strictly timed structure

of the foraging task to isolate the 2-second epochduringwhich subjectswere rewarded for pressing a lever. Each lever press is neces-

sarily separated from the next by aminimum of 4 seconds; 2 seconds of a reward period and 2 seconds of an intertrial interval. There-

fore, each rewarded lever press was treated as a separate trial. We aggregated all trials for each feeder across the session. For each

trial, we determined the number of rewarded presses remaining at both the current patch and all distal patches. We also determined

whether the current trial occurred at the same or different patch from the previous trial. If it was the same as the previous patch, the

subject was said to have made a ‘‘stay’’ choice on the previous trial. Conversely, if it was at a different patch, the subject was said to

havemade a ‘‘leave’’ choice on the previous trial. This binary choice variable was fitted to the total number of rewarded presses avail-

able across the distal patches, using a logistic regression. The resulting sigmoidal function was then used to estimate the stay/leave

probability for each trial, based on how many rewarded presses were available elsewhere in the arena. Finally, for each neuron and

each trial, an average firing rate was computed from the same post-press epoch. The trial-length vector of stay/leave probability

was used to predict this trial-length vector of firing rates, using a linear regression that simultaneously controlled for the number of

rewarded presses remaining at the current patch.

Distribution of variable encoding
We adapted an approach previously developed for estimating clustering in n-dimensions, the elliptical Projection Angle Index of

Response Similarity (ePAIRS).48,49 If neurons form specialized subpopulations, they should form clusters along a shared axis.

Thus, reducing the dimensionality of the tuning conditions across the population code should elucidate a functional cluster. To define

a tuning condition, we compute the estimated marginal means (EMMs) from the fully-fitted LN-GAM model. Estimates were

computed using the minimum and maximum values for each variable in the design matrix. We used the fully-fitted model estimates

because it reduces sparsity in the population matrix. The dimensions of the EMMmatrix were n x c, where n is the number of neurons

in a brain area and c are the EMMs for each condition (1022 conditions total). We then performed principal component analysis (PCA)

on thismatrix to generate an n x dmatrix of scores for each neuron, where d is the 10most explanatory PC scores.We then computed

the relative angles of each point in 10-D PC space and compared the angular distance between all pairs of nearest neighbors. A

functional cluster, therefore, should have relatively tight angles between nearest neighbors when compared to a random distribution.

Statistical significance was computed using a rank sum test.

In each session, a given neuronmight bemore heavily tuned to one variable than another. That is, the EMMs reflect the distribution

of preferred variables. We would expect these estimates to show clustering along the dimensions of the preferred variables.

Therefore, as a positive control we performed the ePAIRS analysis on the EMMs and found significant clustering in all areas

(p < 0.001, in all areas; two-tailed rank sum test).

Linear decoder
Todetermine if randomly distributed variable encoding continues to support downstreamdecodability, we implemented a regression-

based SVM. Tracking data from each session was spatially binned into 9 continuous zones.We define a trial as an entry into the zone,

followed by continuous zone occupancy until exiting the zone. We constructed a pseudo-population of pseudo-trials, 495-trials X

n-neurons, by randomly selecting 55 trials from each zone for each neuron. We repeated the bootstrapping procedure to constitute

one training set and one test set. We created two more matrices by shuffling the zone labels. A regression-based SVM model was

trained on the training set and predictions were calculated by fitting the model to the test set. Accuracy was measured as the overall

rate of successfully predicting the zone from the population neural activity in the test set. We repeated this process 500 times and

averaged the classification accuracy across iterations. We then compared this average accuracy to that from the shuffled data.
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