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Many foragers pursue fleeing prey. The ability to effectively 
pursue prey is therefore a critical element in our behav-
ioral repertoires1,2. To effectively pursue, a forager needs 

to perform a series of computations; that is, it must maintain a rep-
resentation of its current position relative to that of the prey, then 
compute the best path to capture the prey and then execute that 
path. Because the ability to perform such computations can deter-
mine foraging success, pursuit has likely been an important driver 
of our cognition and its underlying brain systems3–5.

One way to improve pursuit effectiveness is to predict the future 
position of the prey and head toward the predicted position6. 
Estimating future positions can be done using the basic Newtonian 
variables of the prey (most importantly, its current position, velocity 
and acceleration) and can be improved using additional (potentially 
even recursive) variables, such as predictions about the likely eva-
sive strategy of the prey in response to the future path of the preda-
tor. By using such information, the forager may be able to formulate 
a representation of the predicted future position of the prey. The 
ability of nonhuman animals to actively predict positions of prey 
during pursuit is poorly understood. Nonetheless, predictive pur-
suit is an important part of the repertoire of many species.

Prediction is important for many cognitive and behavioral pro-
cesses, not just foraging. These include motor control, economic 
decision-making and abstract long-term planning7–11. There is some 
evidence to indicate that foraging animals can predict the long-term 
future; that is, they may be able to travel mentally in time and see 
themselves in the future12,13. However, observations about animal 
prediction tend to be limited to a small number of highly adapted 
species in unique contexts. And, while future planning of move-
ments is relatively well studied, the ability to predict future positions 
of prey during dynamic behavior with rapidly changing goals—
which feed into but are distinct from motor plans—is not. In the 
context of pursuit, a critical question is whether future-predicting 
foragers maintain a specific representation of potential future prey 
positions and whether those representations (assuming they exist) 
make use of specialized processes.

Although the neural bases of predictive pursuit remain unclear, 
we can draw some inferences about its likely neuroanatomy. 
In particular, the dorsal anterior cingulate cortex (dACC) has  

been implicated in prediction, prospection and related processes14–17. 
For example, neuroimaging studies indicate that the human  
dACC is a key region for economic prediction18, for prospective 
reasoning8 and for more open-ended prospective processes18. The 
dACC is well positioned for this role as it receives broad inputs  
from limbic and cognitive systems, integrates these and generates 
high-level control signals that regulate behavior in an abstract and 
high-level way16,19–21.

Here, we examined the future predicting abilities of rhesus 
macaques using a novel virtual pursuit task. Subjects used a joystick 
to move an avatar in an open two-dimensional (2D) field displayed 
on a computer screen. Subjects, controlling the avatar, pursued a 
fleeing prey item that used an artificial intelligence algorithm to 
avoid predation. By examining the properties of a generative model 
fit to our data, we found that our subjects moved toward extrapo-
lated future positions of prey rather than just pointing toward the 
present positions of the prey. Our subjects made their predictions 
based on three Newtonian variables associated with the current 
state, but not other factors that could further improve predictions 
(such as the effect of the movements of the subject on the future 
position of the prey). We also found that neurons in the dACC 
were selective for those three Newtonian variables (and not oth-
ers), which indicates that responses in this region provide sufficient 
information to generate the types of predictions our subjects made. 
Finally, we found that dACC neurons used a spatial code to explic-
itly represent the predicted future position of the prey, and that this 
future representation is multiplexed with the representation of cur-
rent Newtonian variables.

Results
Behavioral results. Three macaques (Macaca mulatta, subjects K, 
H and C) used a joystick to control the position of an avatar (a yel-
low or purple circle) that was moving continuously and smoothly 
in a rectangular field on a computer screen (Fig. 1; Supplementary 
Video 1; Methods). During each trial, subjects had up to 20 s to cap-
ture a prey item (a fleeing colored square) to obtain a juice reward. 
Prey avoided the avatar with a deterministic strategy that combined 
repulsion from the current position of the subject with repulsion 
from the walls of the field. The prey item was drawn randomly from 
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a set of five, identified by color, that differed in maximum velocity 
and associated reward size.

All subjects showed stable behavior within 12 2-h training 
sessions that followed a longer training period on joystick use 
(Supplementary Figs. 1 and 2). All data presented here were col-
lected after the training sessions (the number of trials was 3,229 
for K, 3,890 for H and 2,512 for C). Subjects successfully captured 
the prey in over 95% of trials and, on successful trials, did so in an 
average of 5.04 s (K = 4.26 s, H = 5.32 s and C = 5.54 s) and a median 
of 3.62 s (K = 3.36 s, H = 3.73 s and C = 3.93 s). The performance of 
the subjects varied lawfully with prey type, which indicates that the 
performance exhibited sensitivity to the manipulation of the reward 
and/or difficulty (Supplementary Fig. 1).

Behavioral evidence of future state prediction. For analysis pur-
poses, we split all data into 1-s segments (Supplementary Fig. 3). 
Within each segment, we calculated the error (sum of squares) 
between the model (see below) and the behavior at each frame (that 
is, each 16.67 ms). For each segment, we computed the minimum 
point on a 201 × 201 matrix of intensities for each parameter pair 
(force by time; Fig. 2, see below). We then averaged over all seg-
ments and all trials separately for the three subjects.

We developed a generative model of behavior (see Methods). 
We used the variable τ (tau) to refer to the prediction parameter 
for each subject. The variable τ comes from the model and refers to 
a fit scalar variable, which is multiplied by the future position (see 
the equations in the section “Behavioral model” in the Methods). In 
practice, it can be interpreted as the distance into the future that the 
subject prospects to guide his behavior (Fig. 2a). The variable τ can 
have positive, negative or zero values. A positive value for τ indicates 

that the subject points toward the expected future position of the 
prey; that is, the strategy reflects the prediction. A zero τ indicates 
that the subject points the joystick directly at the current position of 
the prey. A negative value for τ indicates that the subject points the 
joystick toward where the prey was in the recent past. Note that all 
of these strategies (within limits) are capable of eventually catching 
all prey, since the avatar of the subject is, by design, faster than the 
prey. The scalar parameter κ (kappa) reflects the amount of force 
applied toward the direction of the predicted position. Thus, a nega-
tive value indicates that force is exerted away from (180° opposite) 
the position of the prey, whereas a positive value indicates that force 
is exerted toward it.

We also added an inertia term to the model. Specifically, we 
computed an inertially biased path for each 16.67 ms of the frame. 
The biased path is a vector sum of the computed the best predicted 
direction and the previous direction (Psubject(t) – Psubject(t − 1)). In our 
implementation, these two terms have equal weighting. Note that 
in practice, their relative weighting may nonetheless vary because 
the force term (κ, which is fit in the model), affects the weight of 
the new direction relative to the past direction. This approach for 
implementing inertia is designed to intuitively align with how iner-
tia works (see Methods; Supplementary Figs. 2 and 4).

We called our first model the ‘physics-variable-based prediction 
model’ (PVBP). It assumes that prediction by the subjects is derived 
from the current position, velocity (that is, both speed and direc-
tion) and acceleration (which includes both the direction and the 
magnitude of acceleration) of the prey, as well as further derivatives 
(Supplementary Fig. 5). For all three subjects, the best fitting τ was 
positive, which indicates that they point the joystick toward the 
future position of the prey. For ease of interpretation, we translated τ 
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Fig. 1 | Experimental paradigm and behavioral results. a, Cartoon of the virtual pursuit task. The subject uses a joystick to control an avatar (circle) and to 
pursue prey (square) on a computer screen. b, Raincloud plot showing the capture times of each subject in an example session (limit was 20 s). The box 
plot indicates second and third quartiles of the data, and the midline indicates the median of the data (K: 3.36 s, H: 3.73 s, C: 3.93 s). The circles under the 
probability density functions indicate individual data points. c, Avatar and prey trajectories on example trials. Gray represents the path of the avatar; red–
blue represent the path of the prey. The color gradient indicates time progression through the trial.
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into time units by calculating the distance between the current posi-
tion and estimated position, then divided that quantity by the average 
velocity of the prey across the session. The results of this calculation 
indicated that subjects K, H and C pointed the joystick toward the 
position that the prey would occupy in an average of 800 ms, 767 ms 
and 733 ms in the future, respectively. In the context of the task, these 
numbers are substantial: they reflect 18.78%, 14.42% and 13.23% of 
the average trial duration for K, H and C, respectively.

To determine whether the positive prediction parameter τ is  
significantly greater than zero, we performed a bootstrap (random-
ization test making use of resampling with replacement) of heatmap 
slices from each segment (individual heatmap from 500 segments). 
This resampling was performed 500 times, and the resulting heat-
maps were added. Then the τ and κ values that best explained each 
segment (that is, the ones resulting in the lowest cost) were selected 
in each resampling. We confirmed that the estimated values of τ  

and κ were both greater than zero more than 99% of the time (that 
is, P < 0.01).

The distance into the future that our subjects predicted did 
not detectably depend on the speed of the prey (linear regression 
between reward/speed and mean τ for K: β = 3.0316, P = 0.1110; for 
H: β = 4.5798, P = 0.1791; for C: β = 7.1007, P = 0.0957; the term β 
refers to the regression coefficient for speed against neural activ-
ity). We next asked whether taking more complex paths (ones with 
more turns versus more straight paths) affected prediction span. 
The complexity of the prey path (as measured by the path curva-
ture, which was estimated using the average angle method) affected 
prediction. Specifically, subjects predicted less far into the future 
when the prey path had more curves (for K: β = −0.0687; for H: 
β = −0.0567; for C: β = −0.0898, with P < 0.0001 for each subject). 
Thus, subjects had the ability to dynamically adjust their own pre-
diction in light of changing circumstances.
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Alternative models do not predict trajectories as well as physics-
based prediction. We next compared the physics-based model to 
two other models implementing different prediction algorithms 
(Fig. 2b). First, the veridical prediction (VP) model assumes that 
the subjects will make perfect predictions that incorporate all game 
dynamics, including repulsion of prey from the walls and the avatar 
of the subject. This means that a subject that makes a VP takes into 
account the effect his own movements will have on the strategy of 
the prey. Second, the cost-contour map prediction (CCMP) model 
is the same as the VP model, but excludes repulsion from the avatar, 
which means that the prediction model of the subject for the prey 
would not take into account their own motion. We compared the 
performance of each model by computing the sum of squares error 
between the prediction trajectory and the observed trajectories over 
all time bins.

Using the Akaike information criterion (AIC), we found that 
the PVBP model fit better than the other two models in our well-
trained subjects (K: 7.529 × 106, for subject K, second best was VP: 
7.542 × 106; H, PVBP: 8.923 × 106; for subject H, second best was 
CMPP: 8.950 × 106; Fig. 2d). We fit each segment with distinct τ and 
κ parameters, and we fit these same two parameters for each of our 
three models. As a consequence, the comparison of models can be 
directly done without concern of potential bias toward any specific 
model. In other words, by fitting each of the three models subject to 
identical constraints, we ensured a fair comparison across models. 
For the less well-trained subject, C, the CCMP model most accu-
rately explained the trajectories (7.955 × 106).

We speculated that the speed of the prey might influence strategy. 
Indeed, we found that all three subjects used PVBP more frequently 
when the speed of the prey was faster (Supplementary Fig. 6). Note 
that this observed link between speed and the fit of the PVBP model 
occurred even in our third (less fully trained) subject (P < 0.001, 
logistic regression; Supplementary Fig. 6). In any case, the classifi-
cation of strategies using our models appears to be robust: the same 
results were obtained using a different method. Specifically, we fit 
all individual segments to the best model and computed the model 
that fit the most overall number of segments (Fig. 2d; Methods).

Doing the fitting this way may seem excessively flexible. That 
is, using two times the number of segments might allow us to fit 
only noise. Consider, for example, the case of fitting nine data 
points with ninth-order polynomial curve. Conversely, the extra 
freedom may allow us to better fit signal, or, of course, it may fit 
both noise and signal. The key question, then, is whether using a 
large number of parameters makes the fit better despite the pos-
sibility of fitting noise. To answer this question, we directly com-
pared the two approaches (Supplementary Fig. 3). Specifically, 
we compared a model assigning two parameters globally versus 
one applying two parameters for each 1-s segment (that is, mon-
key K: 28,164; monkey H: 35,308; monkey C: 20,720 parameters; 
Supplementary Fig. 3). We then used AIC to compare models. We 
found that the second-by-second fitting resulted in lower AIC 
values, which implies a better fit, than the two-parameter coun-
terpart. Specifically, in this figure, for all individual subjects, the 
change in AIC (AIC for global parameter model minus AIC for 
second-by-second model) was positive, which implies that the 
model fit by the second-by-second model explains the data better 
than the counterpart, for the best physics-based model explaining 
the behavior of the subjects.

Overall, the model comparison results showed that subjects pre-
dict the upcoming position of the prey using Newtonian physics but 
ignore the walls and their own influence on the prey. That is, sub-
jects use a simplified approximation of the structure of the game 
to make future predictions; presumably this simplified one is suf-
ficient to generate good predictions with lower mental effort costs. 
Indeed, the correlation between speed of prey and the reliance of the 
subjects on physics-based prediction (a result confirmed with two 

different analytical approaches) suggests that prediction might have 
a computational cost.

Prediction-related information encoded in the dACC. Based on 
its role as a nexus for motivational, cognitive and motor informa-
tion15,20, and its demonstrated role in human prospection8,22, we 
hypothesized that the dACC would be critical for predictive pursuit 
(Fig. 3a). We fit a statistically unbiased linear–nonlinear general-
ized linear model (GLM)23,24 to responses of 150 well-isolated dACC 
neurons (for K, n = 31; for H, n = 119). For this analysis, we focused 
on the entire trial period rather than preselecting epochs.

Position, velocity and acceleration of the prey were all encoded 
by significant proportions of neurons (Fig. 3; position: 62.00%, 
n = 93/150; speed: 35.33%, n = 53/150; 36.67%; direction: n = 55/150, 
acceleration: 24.67%, n = 37/150, P < 0.001 in all cases, two-way 
binomial test). The model fit shown in magenta is the shape of recon-
structed filter (see examples in Fig. 3c,d). According to the GLM, 
jerk, the derivative of acceleration, is not encoded (Supplementary 
Fig. 5). Jerk also did not measurably affect the neural responses of 
the subject (it only modulated 2.00% of cells, n = 3/150, P = 0.1288, 
two-way binomial test). Together, these results indicate that dACC 
ensembles carry the major raw ingredients that our subjects use to 
predict prey positions.

We wondered whether ostensible coding for prey variables could 
be the by-product of coding for self-position, since self-position 
and prey position do tend to be correlated. We therefore repeated 
our GLM analyses but included self-position, self-direction and 
self-speed as explanatory factors and considered variance explained 
by prey parameters only after accounting for these variables. Doing 
this, the proportion of neurons selective for the position infor-
mation of the prey remained significant (n = 108/167, 64.50%; 
P < 0.001, two-way binomial test), as did neurons selective for prey 
speed (n = 31/167, 22.16%; P < 0.001, two-way binomial test) and 
direction (n = 20/167, 11.98%, P < 0.001, two-way binomial test). 
Note that for this analysis, we included a small subset of neurons, 
n = 17, that were excluded from the previous analysis. Results did 
not differ if we used the same slightly smaller set of neurons.

Neurons in the dACC encode future position. We next asked 
whether dACC neurons encode the future position of the prey. For 
each neuron, we refit the GLM using an additional parameter: the 
position of the prey at time t in the future. We selected the time t 
(t = 833 ms) that was most similar to the value of τ resulting from 
our generative model; that is, the one indicating the most likely 
time span of prediction (733, 766 and 800 for K, C and H, respec-
tively) subject to the additional constraint of being a multiple of 
166.67 (that is 10 frames). Note that although this value was chosen 
in advance, it aligns with the empirically derived measure of peak 
future position coding (Fig. 4d, see below).

Our analysis approach deals with the problem of correlation 
between the set of current Newtonian variables (including current 
position) and future position by assigning all explanatory power to 
the set of current variables first, and only counting as significant 
any additional variance explained by future position (see Methods). 
Despite this conservative criterion, we found that responses of 
24.67% of dACC neurons were selective for the future position of 
the prey at time t (n = 37/150).

Visual inspection of the filters of the neurons showed that their 
selectivity is complex (examples are shown in Fig. 4c). That is, they 
are positionally tuned, but, unlike place cells, have nonpoint-like 
shapes. They contained multiple peaks and there did not appear to 
be smooth gradients. Instead, they appeared to be heterogeneously 
spatially tuned. In this manner, they resemble recently identi-
fied non-grid-like space-selective cells in the entorhinal cortex23. 
Notably, conventional methods for detecting place/grid-like cells 
will greatly underestimate the proportion of such tuning.
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We next asked how strongly dACC neurons encode the future 
position of the prey. We calculated the proportion of log likelihood 
increase (LLi) between the current position model and the current 
plus future model (Fig. 4a). Our neurons showed a wide range of 
marginal variance explained. On average, adding the future position 
term improved the variance explained by 6.89% (the mean of this 
proportion is significantly different from zero, P < 0.001, Wilcoxon 
sign-rank test, Fig. 4a, inset).

We then asked whether these newly discovered future posi-
tion cells constitute a separate class of neurons from the cells that 
tracked the current position of the prey. To do this, we computed 
the explanatory variance accounted for by future position (variance 
explained by the combined model minus variance explained by cur-
rent position) and current position, as defined by LLi in fitting. We 
found a positive correlation between these variables (Fig. 4b), which 
indicates that current and future position were multiplexed in the 
same population of cells (r = 0.7394, P < 0.001; see also ref. 25).

To quantify the difference between current and future position 
coding, we fit separate models: one incorporated current position 
plus current Newtonian variables while the other was the same but 
used future position (assuming t = 833 ms) instead of current posi-
tion. For the 36 neurons with significant tuning for both current 
and future position, we calculated the similarity between the filters, 
using a technique known as spatial efficiency (SPAEF)26 (Fig. 4c). A 
zero SPAEF indicates orthogonal filters, whereas a positive SPAEF 
indicates similar filters and a negative SPAEF indicates anticorre-
lated filters. Although the mean of the SPAEF for our neurons was 
positive, it was not significantly so, and spanned a large range of val-
ues from negative to positive (mean of population SPAEF = 0.0440, 
Wilcoxon sign-rank test, P = 0.3790).

Finally, we assessed future encoding by examining the accuracy 
of model fitting to each of several possible future times, ranging 
from 0 to 1,333 ms in the future. We ran a type of sliding win-
dow analysis that involved sampling one frame (16.67 ms) every 
10 frames (166.67 ms) and ignoring the intervening 9 frames. We 
found that the value of 833 ms fit the largest number of neurons 
(values around it fit many neurons too). Specifically, the plurality, 
24.67% of neurons, were tuned for prey position at 833 ms (Fig. 4d). 
The roughly equivalent value of the neural and the behaviorally fit 
prospective distance (733 and 800 ms for those two subjects) sug-
gests that these neurons encode the future position of prey on the 
same approximate timescale as the subject actively predicts.

We considered the possibility that this peak at 833 ms was due 
to an unanticipated correlation between positions in the future and 

at the present. If this were so, then the average distance of the self 
and/or prey would show a local minimum at a point in the future 
corresponding to the peak. However, we did not see this. On the 
contrary, we found that the distance increases monotonically for 
both subjects (Fig. 4e).

State information is not confounded with gaze information. 
Activity in the dACC is selective for saccadic direction and may 
therefore correlate with gaze direction (although this has not, to 
our knowledge, been shown27). Consequently, it is possible that 
our spatial kernels may reflect not task state but gaze information. 
Specifically, what appears to be tuning for future position may 
instead be attributable to the fact that monkeys looked toward the 
predicted future prey position. We tested this possibility by calculat-
ing the Euclidean distance between eye position and prey position 
in a range from −80 to +80 frames (Fig. 5a). The distance between 
eye and prey position was the closest at −5 frames (77.09 pixels), 
which indicates that eye position lagged the prey position. Thus, if 
gaze direction was a major confound, it would show up as increased 
selectivity for past positions, not prediction of future positions. 
Likewise, the chance that prey velocity encoding is a by-product of 
eye velocity encoding was belied by the stark differences between 
gaze speed and prey speed (P < 0.001, Wilcoxon sign-rank test, but 
also clear from visual inspection of Fig. 5b). Finally, we repeated 
our GLM analyses (see above) but included eye position (only for 
the one subject from which we collected gaze data). We found that 
that the number of tuned neurons for the prey did not substantially 
change; that is, adding in gaze position as a regressor did not quali-
tatively change our results (Fig. 5c).

Encoding of reward and reward proximity in the dACC. Research 
based on conventional choice tasks indicates that dACC neurons 
track values of potential rewards28. We next tested how the dACC 
encodes anticipated rewards in our more complex task. We found 
that averaging over all other variables, the value of the pursued 
reward modulates activity of 8.67% of neurons (n = 13/150, using a 
simple linear regression of firing rate against value; this proportion 
is greater than chance, P = 0.038, one-way binomial test). Note that 
this analysis ignores the potential encoding of prey speed, which 
is perfectly correlated with static reward in our task design. We 
hypothesized that reward/speed would be encoded in a modula-
tory manner29; that is, that the pursued reward/speed would alter 
the shape of the tuning for other task variables, rather than be 
multiplexed (Fig. 6a). To test this hypothesis, we split our dataset 

D
is

ta
nc

e 
(p

ix
el

)

0 15 30

Speed (pixels per frame)

0

0.1

0.2

P
ro

ba
bi

lit
y 

(a
.u

)

N
eu

ro
ns

 (
%

)

Prey
position

Prey
direction

Prey
speed

0

25

50

75

Without gaze position

With gaze position

Distance from prey

Distance from subject

Speed of prey

Speed of eye movement

a c

–80 0 80

Time shift (frames)

0

40

80

120 b

Fig. 5 | Analyses that control for potential gaze confounds. a, The Euclidean distance between the eye position at t = 0 and prey position (orange solid 
line) or self position (blue solid line). Shading represents s.e.m. Only data from subject K are shown (n = 147,280 frames). b, Speed distribution of prey 
movement and smooth eye pursuit. c, Proportion of neurons whose responses are selective for three key variables using our GLM procedure (cyan) and 
in an analysis in which all variance is assigned to eye position first (green). All three variables are still significant in the population when including gaze 
position (total number of neurons in the analysis is 31). The measure of center is the mean value computed by a 50× bootstrap; error bars represent the 
standard deviation.

Nature Neuroscience | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


ArticlesNaTure NeurOScIence

by reward size and, as a control, split it randomly. We found that 
for several variables (prey position, direction and speed), value 
splits produced greater differences than random ones (purple bar, 
P = 0.0221 for prey speed, and P < 0.001 for other prey variables, 
Fig. 6b). This result indicates that the reward information encoded 
in dACC interacts mathematically with encoding of other variables. 
In other words, selectivity is mixed.

A good deal of research suggests that dACC neurons also sig-
nal the approach in time of impending rewards30–32, even in con-
tinuous tasks33. We therefore asked whether it does so here. We 
repeated our GLM, including relative (self-to-prey) distance as an 
explanatory variable. We found that 38.67% of neurons (n = 58/150) 
were tuned for self-prey distance. Interestingly, this relationship is 
heterogeneous; of these 58 neurons, 31.03% (n = 18/58) showed 
a positive slope and 18.97 % (n = 11/58) showed a negative slope. 
This bias was not itself significant (P = 0.2649 for rise and fall bias, 
n = 18/29; P = 1.000 for monotonic bias, n = 29/59, binomial test in 
all cases). This result indicates that while dACC neurons do track 
the approach to reward, they do not show an overall rise or fall in 
activity as they do so.

Discussion
Pursuit is an important element of the behavioral repertoire of 
many foragers2,5,34. The algorithmic bases of pursuit have recently 
attracted the interest of scholars in ecology, engineering, psychol-
ogy and other disciplines6,33,35–39. Nonetheless, we know very little 
about how pursuit decisions occur in real time, and we know even 
less about their neuronal underpinnings. Here, we examined how 
macaques pursue virtual prey in a continuous, time-varying task. 
We developed a generative model based on a large dataset. The 
result of this model suggests that our subjects follow a predictive 
strategy. That is, instead of pointing toward the position of the prey, 
they extrapolate the future positions of prey and use this prediction 
to adjust their heading. This strategy is more efficient (yields more 
reward per unit time) but may be more computationally demand-
ing than a simpler one that would involve pointing at and tracking 
the current position of the prey. These results demonstrate that pur-
suing animals can adopt complex future-predicting strategies that 
improve performance.

We found that dACC neurons track the elemental physical vari-
ables our subjects use to predict the future and explicitly encode 
the prediction. Specifically, we found that firing rate responses of  

neurons in dACC encode three Newtonian variables (position, 
velocity and acceleration) that our subjects used to track the prey 
and predict future prey positions. The same neurons carry an addi-
tional representation of the future position of the prey that is mul-
tiplexed with the Newtonian variables rather than maintained in a 
separate pool of specialized neurons. Both representations make use 
of a 2D response field, akin to place fields in hippocampus, but not 
localized to a single position. Specifically, spatial representation in 
the dACC is qualitatively similar to place representations of non-
grid cells in the entorhinal cortex23. It is notable that the dACC uses 
partially distinct spatial tuning functions to track the present and 
future positions of the prey, thus in principle allowing unambiguous 
decoding for a given population response.

Our work is directly inspired by important studies that identified 
mechanisms underlying pursuit in other animals36,37,40. Our work 
goes beyond these studies by developing a generative model; that is, 
a model that seeks to understand how the data are generated41. One 
benefit of the generative model is that it lets us probe how the deci-
sion is made at every time step and make guesses about the underly-
ing mental process leading to the decision. The generative model in 
turn is vital for extending our understanding of mechanism to the 
neuronal level.

This model enabled us to generate results that provide novel 
insight into the role of the dACC in cognition. First, our results 
emphasize the core role of the dACC in prediction, a role that is 
central to other theories, albeit not ones that directly involve pur-
suit8,14,17,18,42,43. One recent study is particularly relevant to these 
results17. The authors examined hemodynamic activity in the human 
dACC during a complex decision-making task in which subjects 
had to track previous rewards and use a reinforcement learning-
like mechanism to formulate a future prediction and make the best 
choice. They found that the dACC tracks multiple variables, but was 
particularly selective for long-term estimates of expected prediction 
errors. These results highlight the key role of the dACC in predic-
tion in general and suggest its role is conserved across species (see 
also ref. 17). Second, our findings highlight the importance of the 
dACC to navigation. While studies of navigation typically focus 
on the medial temporal lobe, a growing body of work has begun to 
explore the role of cingulate cortex, which receives direct projec-
tions from medial temporal regions22,44.

There are several important limitations to the current work. 
First, and most obviously, our subjects were not performing a 
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truly naturalistic task; they were performing a laboratory task that 
required specialized training. Future studies will be needed to ascer-
tain whether these results relate to natural pursuit contexts that are 
ostensibly similar, such as pursuit of insects in the peripersonal 
space45,46. Second, and relatedly, the task space we used was greatly 
constrained—both agents were restricted to a small rectangular 
space and had strict speed limits. Subjects had full information 
about the position of the prey at all times. To more fully understand 
prediction, it will be critical to extend to contexts in which some 
information is hidden.

Traditional laboratory tasks that study topics of interest to cog-
nitive neuroscience—decision-making and executive control—have 
discrete steps and force the brain to adjust to that structure47. One 
reason we developed the prey pursuit task is that it embeds those 
cognitive processes in a continuous time-varying task. Doing so 
allows us to study one of the greatest strengths of the brain—its abil-
ity to adjust and change its mind on the fly as new evidence comes 
in47–50, and to incorporate that evidence into future plans.
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Methods
Subjects. All animal procedures were approved by the University Committee 
on Animal Resources at the University of Rochester and/or the University of 
Minnesota and were designed and conducted in compliance with the Public Health 
Service’s Guide for the Care and Use of Animals. Three male rhesus macaques (M. 
mulatta) served as subjects for the behavior experiments; two of them also served 
as subjects for the physiology experiments. The subjects were aged 9 years (subject 
K), 10 years (subject C) and 10 years (subject H). The subjects had never previously 
been exposed to decision-making tasks in which they could use a joystick to 
pursue a moving prey. The previous training history for these subjects included two 
types of foraging tasks51,52, intertemporal choice tasks53, several types of gambling 
tasks54–56, attentional tasks (similar to those in ref. 57) and two types of reward-
based decision tasks58,59.

Experimental apparatus. The joystick was a modified version of commercially 
available joysticks with a built-in potentiometer (Logitech Extreme Pro 3D). The 
control bar was removed and replaced with a control stick (a 15-cm plastic dowel) 
topped with a 3-cm diameter plastic sphere designed to be easy for macaques to 
manipulate. The joystick position was read out by a custom-coded program in 
Matlab running on the stimulus-control computer. The joystick was controlled by 
an algorithm that detected the positional change of the joystick and limited the 
maximum pixel movement to within 23 pixels in 16.67 ms.

Task design. At the beginning of each trial, two shapes appeared on a gray 
computer monitor placed directly in front of the subject. The yellow (subject 
K) or purple (subjects H and C) circle (15-pixels in diameter) represented the 
subject. Subject position was determined by the joystick and was limited by the 
screen boundaries. A square shape (30 pixels in length) represented the prey. The 
movement of the prey was determined by a simple artificial intelligence algorithm 
(see below). Each trial ended with either the successful capture of the prey or after 
20 s, whichever came first. Successful capture was defined as any spatial overlap 
between the avatar circle and the prey square. Capture resulted in an immediate 
juice reward, whereby the juice amount corresponded to prey color as follows: 
0.3 ml for orange; 0.4 ml for blue; 0.5 ml for green; 0.6 ml for violet; and 0.7 ml for 
cyan.

The path of the prey was generated interactively using A-star pathfinding 
methods, which are commonly used in video gaming60. For every frame (16.67 ms), 
we computed the cost of 15 possible future positions the prey could move to in 
the next time-step. These 15 positions were equally spaced on the circumference 
of a circle centered on the current position of the prey, with a radius equal to the 
maximum distance the prey could travel within one time-step. The cost in turn was 
based on the following two factors: the position in the field and the position of the 
avatar of the subject. The field that the prey moved in had a built-in bias for cost, 
which made the prey more likely to move toward the center (Fig. 1b). The cost 
due to distance from the avatar of the subject was transformed using a sigmoidal 
function: the cost became zero beyond a certain distance so that the prey did not 
move, and it became greater as distance from the avatar of the subject decreased. 
Eventually, the costs from these 15 positions were calculated and the position 
with the lowest cost was selected for the next movement. If the next movement 
was beyond the screen range (1,920 × 1,080 resolution), then the position with the 
second lowest cost was selected, and so on.

The maximum speed of the subject was 23 pixels per frame (and each frame 
was 16.67 ms). The maximum and minimum speeds of the prey varied across 
subjects and were set by the experimenter to obtain a large number of trials (Fig. 
1). Specifically, speeds were selected so that subjects could capture prey on <85% 
of trials; these values were modified using a staircase method. If subjects missed 
the prey three times consecutively, then the speed of the prey was reduced. Once 
the subject intercepted the prey in a trial where the staircase method was used, 
then the selection of prey speed was randomized again. To ensure sufficient time of 
pursuit, the minimum distance between the initial position of each subject avatar 
and prey was 400 pixels.

Training level estimation. Three subjects were trained for the same amount of 
time (8 weeks). As training progressed, each subject was exposed to a progressively 
more difficult (faster) suite of prey, up to a fixed maximum. Subjects K and H 
reached a similar range for the maximum speed of prey during the training period 
(K:15 pixels per frame; H: 14 pixels per frame). However, subject C only attained a 
maximum speed of 8 pixels per frame (Supplementary Fig. 6). It is for this reason 
we refer to him as the less well-trained subject.

Behavioral model. To fit each the movement of each subject, each trial was divided 
into 1-s-long segments. Each segment included 61 data points (because we used 
16.67-ms resolution). We modeled these trajectories using a single prediction and a 
single force parameter for the entire trial as a simplifying assumption. Nonetheless, 
it is reasonable to assume that throughout a long 20-s period there would be 
an active adjustment of prediction and force. An actual comparison using AIC 
supported our intuition, and we used segment as the unit of analysis throughout 
(values of AIC of segment/AIC of trial was 0.9328, 0.9214 and 0.9227 for subjects 
K, H and C (or whatever), respectively.

Overall, the position of the subject was generated according to the following:

Psubjectðt þ 1Þ ¼ κf ðPsubjectðtÞÞ þm

where Psubject(t) is position of the subject at time t, m is the inertia of the subject as 
calculated from the joystick and κ is the force parameter. The vector 𝛋f(Psubject(t)) 
was then summed with the inertia m that was defined as follows:

m ¼ PsubjectðtÞ � Psubjectðt � 1Þ

Pprey(t) indicates the position of the prey at time t. The function with respect to 
subject position at time t was defined as follows:

f ðPsubjectðtÞÞ ¼ Ppreyðt þ 1Þ � PsubjectðtÞ

Then the position of the prey at time t + 1 was as follows:

Ppreyðt þ 1Þ ¼ PpreyðtÞ þ τ
Xk

n¼0

dnPpreyðtÞ
dtn

Where the n indicates the order of derivation with respect to the time. Thus, n = 1 
indicates the velocity and n = 2 indicates the acceleration.

The PVBP model incorporates one previous time step to predict the next 
position of the prey. This approach is similar to a Kalman filter61. The other 
two models we tested do not utilize any past information. The model assuming 
prediction using the CCMP model considers only the lowest cost location at the 
next time step. The model assuming VP automatically finds the exact position of 
the prey at the next time step. Once the position of the prey on the next time step is 
predicted, the model computes how far this predicted position is from the current 
position of the agent. A prediction value of 1 indicates that the future position will 
be as far as from the current position of the agent as the current position of the 
prey. The best-fitting parameter pairs were determined by performing a grid search 
across the ranges of both parameters.

During this search, we tested the range of the prediction parameter between 
−400 and 400 for subjects H and C, and between −200 and 200 for subject K. Units 
for this range correspond to the distance the prey moved in the previous time step. 
Subjects H and C had a larger range because over 5% of their trajectories resulted 
in either −200 or 200 in the prediction parameter value. Representative parameters 
for explaining each segment were selected based on the value of the sum of squared 
error between the actual segment and the segment generated by the model.

Significance testing for estimating parameters of the behavioral model. To 
determine whether the positive prediction parameter was significantly greater than 
zero, we performed a bootstrap analysis of heatmap slices from each segment. This 
resampling was performed 500 times, and selected heatmaps were added. Then, the 
parameter set resulting in the lowest cost was selected in each resampling.

Model evaluation. To evaluate model performance and compare among models, 
we computed the AIC using the likelihood of each model (Fig. 2; Supplementary 
Figs. 4 and 5). We first calculated the mean and variance of all the sum of squared 
errors across trajectories. Then we estimated the likelihood assuming a normal 
distribution centered on the mean of the sum of squared errors with a variance 
equivalent to the variance of the sum of squared errors across all trajectories. To 
validate whether subjects used a single prediction and force across all the trials or 
adaptively changed their prediction method, we compared the AIC value between 
cases for which the parameter pair varied across all trajectories using only the 
single best parameter pair.

Electrophysiological recording. One subject (H) was implanted with multiple 
floating microelectrode arrays (Microprobes for Life Sciences) in the dACC. This is 
the region that we define as Area 24 (ref. 15) and corresponds to the dACC in most 
other primate studies, including those from our laboratory52,54,62. Each floating 
microelectrode array had 32 electrodes (impedance of 0.5 MOhm, 70% Pt, 30% 
Ir) of various lengths to reach multiple layers within the dACC. Neurons from 
subject K were recorded with laminar V probes (Plexon) that had 24 contact points 
with 150 μm of inter-contact distance. Continuous, wideband neural signals were 
amplified, digitized at 40 kHz and stored using the Grapevine Data Acquisition 
System (Ripple). Spike sorting was done manually offline (Plexon Offline Sorter). 
Spike sorting was performed blind to any experimental conditions to avoid bias.

Details of the linear–nonlinear model. To test the selectivity of neurons 
for various experimental variables, we constructed GLMs with navigational 
variables23,24. The GLMs estimated the spike rate (ri) of one neuron during time 
bin t as an exponential function of the weighted sum of the relevant value of each 
variable at time t, for which the weights are determined by a set of coefficients (wi). 
The estimated firing rates from the GLMs can be expressed as follows:

r ¼ exp
X

i

XT
i wi

 !
=dt

Where r denotes a vector of firing rates for one neuron over T time points across 
the session, and i indexes the variables of interest, for example, the position of 
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the avatar on the screen. The vector of firing rates over T time points provide the 
benefit for modeling the neural activity without the need of specifically time-
locking to a behavioral event. Xi is a matrix in which each column represents a 
set of ‘state variables’ of the animal (for example, 1 of 12 speeds, determined by 
post hoc binning) obtained from binning the continuous variable so that all the 
columns for a particular row are 0, except for one column. Unlike conventional 
tuning curve analysis, GLM analysis does not assume the parametric shape of the 
tuning curve a priori. Instead, the weights, which define the shape of tuning for 
each neuron, were optimized by maximizing the Poisson log-likelihood of the 
observed spike train given the model-expected spike number, with additional 
regularization for the smoothness of parameters in a continuous variable, and a 
lasso regularization for parameters in a discrete variable. Position parameters were 
separately smoothed across rows and columns. The regularization hyperparameter 
was chosen by maximizing the cross-validation log-likelihood based on several 
randomly selected neurons. The unconstrained optimization with gradient and 
Hessian was performed (Matlab fminunc function). The model performance of 
each neuron was quantified by the log-likelihood of held out data under the model. 
This cross-validation procedure was repeated ten times (tenfold cross-validation), 
and overfitting was penalized. Through multiple levels of penalties, we compared 
the performance of models with varying complexity.

Forward model selection. Model selection was based on the cross-validated log-
likelihood value for each model. We first fit n models with a single variable, where 
n is the total number of variables. The best single model was determined by the 
largest increase in spike-normalized log-likelihood from the null model (that is, the 
model with a single parameter representing the mean firing rate). Then, additional 
variables (n – 1 in total) were added to the best single variable model. The best two-
variable model was preferred over the single variable model only if it significantly 
improved the cross-validation log-likelihood value (Wilcoxon signed-rank test, 
α = 0.05). Likewise, the procedure was continued for the three-variable model and 
beyond if adding more variables significantly improved the model performance, 
and the best, simplest model was selected. The cell was categorized as not tuned  
to any of the variables considered if the log-likelihood increase was not 
significantly higher than baseline, which was the mean firing rate of fitted  
neurons across the session.

Future position models. We examined the effect of future position by fitting a 
GLM having ‘future position’ and ‘current position’ together as the input variable. 
Then we compared this model to the GLM model with only the current position 
as the input. The difference between the two models provided evidence that the 
additional variance was explained by including future position.

Comparison between current and future position filters. For this purpose, 
we constructed two GLMs: one with current position and current Newtonian 
variables (velocity and acceleration), and another with future position and current 
Newtonian variables. Then we selected the neurons that showed significant tuning 
for both models. To compare the similarity between two positional filters, we used 
the SPAEF that prior literature suggests to be more robust than the 2D spatial 
correlation26. It quantifies the similarity between two maps as follows:

SPAEF ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA� 1Þ2 þ ðB� 1Þ2 � ðC � 1Þ2

q

where A is the Pearson correlation between two maps, B is the ratio between 
the coefficients of variation for each map and C is the activity similarity measured 
by histogram profiles. Values near −1 indicate anticorrelated maps (one tends to be 
high when the other is low), 0 indicates uncorrelated maps and 1 indicates perfect 
matching between the two.

Velocity-dependent PVMP prediction bias. We examined whether PVBP is 
preferred when the velocity of prey is high (Supplementary Fig. 6). We first 
obtained the average velocity of the prey at each segment, and then categorized 
each segment as belonging to either the physics or non-physics variable-based 
prediction based on which fit result was best. With the prey velocity and segment 
category, we performed logistic regression with velocity as a predictor and category 
as the dependent variable (glmfit in Matlab).

Statistics. Error bars of log-likelihood fit increase in the neural analysis were 
obtained using a bootstrapping cross-validation procedure (50 times; Fig. 4a). 
Error bars in the percentage of tuned neurons were obtained by calculating the 
mean for 50-time bootstrapping processes (Figs. 4d, 5c and 6b). Other error bars 
represent the standard error of the mean (s.e.m.) (Figs. 5e and 6a; Supplementary 
Fig. 1). No statistical methods were used to predetermine sample sizes, but our 
sample sizes were similar to those reported in previous publications both from 

our laboratory and other laboratories (ref. 41 for the behavioral model, refs. 51,52 
for the neural data). Data were assumed to be normally distributed, but this was 
not formally tested. Trial conditions were randomly generated. The selection of 
subjects was arbitrary. Data collection and analyses were not performed blinded to 
the conditions of the experiments. No data points were excluded.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
A portion of the data is available on Github (https://github.com/sbyoo/
prospectpursuit/). Full data are available from the corresponding author upon 
reasonable request.

Code availability
Code is available at https://github.com/sbyoo/prospectpursuit/.
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