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SUMMARY

Our natural behavioral repertoires include coordinated actions of characteristic types. To better understand
how neural activity relates to the expression of actions and action switches, we studied macaques perform-
ing a freely moving foraging task in an open environment. We developed a novel analysis pipeline that can
identify meaningful units of behavior, corresponding to recognizable actions such as sitting, walking, jump-
ing, and climbing. On the basis of transition probabilities between these actions, we found that behavior is
organized in a modular and hierarchical fashion. We found that, after regressing out many potential con-
founders, actions are associated with specific patterns of firing in each of six prefrontal brain regions and
that, overall, encoding of action category is progressively stronger in more dorsal andmore caudal prefrontal
regions. Together, these results establish a link between selection of units of primate behavior on one hand
and neuronal activity in prefrontal regions on the other.

INTRODUCTION

A common view in neuroscience sees the expression of behavior

as the result of computations in a circumscribed set of dorsal

prefrontal regions, especially the motor and premotor cortices.

In this view, other more rostral and ventral regions have qualita-

tively distinct contributions, such as value representation and

working memory. A contrasting view sees the prefrontal cortex

as a hierarchy and emphasizes the quantitative but not qualita-

tive difference between regions.1–7

Wewere especially interested in understanding the answers to

these questions in the domain of natural behavior. Most of the

research on the neural basis of action is focused on simple

movements, especially reach movements with the arm and

saccadic movements in the oculomotor system. Research using

these methods have given us important knowledge; indeed,

many of the successes in motor control come from such

research, including work that identified important roles for the

primary (M1) and dorsal premotor (PMd) cortices, as well as roles

for the supplementary motor area (SMA) and even the dorsal

anterior cingulate cortex (dACC) in action planning and execu-

tion.8–11 However, it remains unclear whether these ideas will

apply to more naturalistic behaviors of the type that character-

izes real-world behavior.

Indeed, there is a good deal of research looking into natural-

istic behavior.12–15 For example, recent work shows that the

behavior of mice is organized into a grammatical structure and

that the dorsolateral striatum mediates this organization.16 Like-

wise, selection and change of behavioral state in flies and zebra-

fish is mediated by specific patterns of neural activity in specific

neurons.17,18

The study of the neuroscience of natural behavior has de-

pended critically on the development of high-quality video-

based motion-tracking systems. These systems have led to

the ability to track positions of body landmarks in small animals,

including worms, flies, and mice.12,17,19–23 This problem is much

more difficult in primates; although, even here, significant prog-

ress has beenmade.24–31 In smaller animals, the behaviors iden-

tified by tracking systems allow for the automated identification

of specific meaningful behavioral units (sometimes called

‘‘ethogramming.’’23,25,30,32–34 Behavior in these organisms con-

sists of structured sets of behaviors that are organized hierar-

chically. The success of these methods raises hopes that we

can develop parallel methods for quantifying behavior in

macaques.30,31

One question we were particularly interested in is that of how

the hierarchy of behavior is reified in the prefrontal cortex. On

one hand, a modular viewpoint would predict that different

anatomical regions would have qualitatively different roles and,

thus, that when looking at the neural basis of state, some regions

would show much stronger effects than others or even qualita-

tively different roles. On the other hand, a hierarchical, or

gradient-based, viewpoint would predict that these different re-

gions would have largely similar effects qualitatively, but they
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would differ quantitatively with their position in an anatomical

hierarchy.5,35,36

We examined the behavior of two macaques performing a

foraging task moving around a large (2.45 3 2.45 3 2.75 m)

open field. We made use of Open Monkey Studio, a system

that can perform detailed three-dimensional (3D) behavioral

tracking in rhesus macaques with high spatial and temporal pre-

cision.27,28 We used this system to track the positions of 15 body

landmarks at high temporal and spatial resolution as our sub-

jects performed a foraging task. We recorded brain activity in

six brain regions: orbitofrontal cortex (OFC), dACC, SMA, ventro-

lateral prefrontal cortex (vlPFC), dorsolateral prefrontal cortex

(dlPFC), and PMd. In all regions, we found that neural activity

varies systematically with the action of the subject. We found

that the strength of action coding was systematically greater in

more caudal andmore dorsal structures.We also found that neu-

rons have non-specific signals associated with the switch be-

tween actions and that the strength of these signals is—in a

reverse of the pattern for action signals—progressively stronger

in more ventral prefrontal structures.

RESULTS

Behavioral and neural recordings
We studied the behavior of two male rhesus macaques (Macaca

mulatta) performing a depleting-rewards freely moving foraging

task (see STAR Methods; Videos S1, S2, S3, and S4) in a large

open cage (2.45 3 2.453 2.75 m cage with four barrels) that al-

lowed for free movement (Figures 1A and 1B). The enclosure

contained reward stations (typically four, but on a few occasions

two or three; see STAR Methods). These reward stations con-

sisted of touch screens, juice reservoirs, dispenser tubes, and

levers (Figure 1B). Each station had the same arrangement, but

individual stations were positioned at fixed locations of varying

heights. Subject behavior was otherwise physically uncon-

strained within this large environment.

The task was straightforward; the computer displays were

initially all blue. If the subject pressed the lever at a reward sta-

tion, the juice tube provided an immediate aliquot of preferred

liquid reward (typically water, always 1.5 mL) and a green cross

appeared while a 2-s tone played (Figure 1C). When the tone

stopped, the screen turned off. Following another 2-s interval,

the screen returned to blue to indicate that the lever had been re-

activated. The subject could repeat this process four times to

obtain four (identically sized) rewards (Figure 1D). Following the

fourth lever press, the patch was inactivated, meaning it would

no longer activate with time. Instead, to reactivate a patch, the

subject was required to press the lever again (that is, a fifth

time); this press would not be rewarded, but instead would

initiate a 3-min-long waiting period, following which the patch

would reset. Note that, during early training, we found that in

the absence of a task, macaque subjects will typically sit in the

cage without much movement. Thus, the major goal of the task

for this study was to elicit variegated behavior.

The length of each daily recording session was set by the

experimenter (average: 100.2 min). We analyzed 81 sessions

for subject Y and 86 for subject W (see STARMethods for exclu-

sion criteria). Subjects were tracked with 62 high-resolution ma-

chine vision cameras (Figure 1B), and the pose (3D positions of

13 body landmarks, see STAR Methods) was determined for

each frame (30 frames per second) using our pose-tracking sys-

tem, Open Monkey Studio27,28 (Figure 1E). This system provides

estimates of the positions of 13 body landmarks in every frame of

video in three dimensions. As a result, we obtained an average of

180,307 frames of pose per session and a total of 35,881,005

frames. We simultaneously recorded neural activity using a

locally mounted data logger attached to a multielectrode (n =

128 electrodes) array with independently movable electrodes

(Figure 1F; STARMethods), targeting multiple regions in the pre-

frontal cortex (Figure 1G).

Embedding recovers actions
To identify behaviors, we used an embedding approach similar

to one that has been used successfully in rodents and flies.32,33

A high-level description of the pipeline is visualized in Figure 2A.

In brief, we extracted kinematic features from the 13-landmark

reconstructed pose, re-projected these samples onto a common

2D embedding space, and clustered the samples to discover

repeated, recognizable behaviors. We extracted a total of 91

pose-related features. We selected these features with the

goal of providing a fairly full accounting of the diversity of

behavior. This list of features included limb and joint configura-

tions, periodicity in limb configurations, and gross dynamics of

the subject; see the STAR Methods for a full list of features

and Figure 2E for an example.

To cluster samples robustly and efficiently, we employed non-

linear dimensionality reduction (UMAP37) on these 91 features to

re-project samples. We trained the embedder on a training set

from subject Y. We chose to construct our basis set from the

subject with greater behavioral range; had we chosen the other

subject, we would have obtained similar, albeit slightly noisier,

results (data not shown). This process resulted in a re-projection

of the 91D behavioral space onto two dimensions, in which pe-

riods of similar kinematics are adjacent to one another in the

resultant lower-dimensional space.

We then performed a kernel density estimation to approximate

the probability density of embedded poses at equally inter-

spersed points (Figure 2B). The embedding density maps clearly

reveal a clustered organization, as evinced by visually separable

peaks (Figure 2B). Each cluster reflects a set of similar poses that

are relatively distinct from others. We formally identified clusters

using a watershed algorithm on the density map from the training

set (technically, on its inverse, so that peaks became troughs).33

This algorithm treats troughs in the maps as sinks and draws

optimal boundaries separating them. The resulting embedding

space contained 59 distinct clusters. We then used the learned

embedding and cluster assignment to re-project all data sam-

ples from both subjects and assign a cluster to each sample

(Figure 2C).

Examples of behaviors discovered through this pipeline are

visualized in Figures 3A–3C. Figure 3A shows example behaviors

delineated by an observer (such as jumping, walking, and sitting)

and the corresponding cluster assignment. Each of these behav-

iors was associated with a unique fingerprint of kinematics (Fig-

ure 3B), corresponding to separate clusters in the low-level

embedded space (Figure 3C). We confirmed that clusters were
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well separated by computing the Davies-Bouldin index (DBI), a

ratio of the within-cluster scatter to between-cluster distances.

In both subjects, the DBI was lower than chance, indicating

that samples within a cluster were more similar than between

clusters and could thus be statistically separable (subject Y

mean DBIobserved = 2.24 ± 0.023, DBIrand = 65.1 ± 1.8,

p < 0.001; subject W mean DBIobserved = 2.9 ± 0.029, DBIrand =

36.1 ± 0.41, p < 0.001). Indeed, even when considering only pairs

of clusters, the vast majority of pairs were separable (subject Y,

99% ± 0.0003%; subjectW, 86% ± 0.03%). This provides confir-

mation that the extracted clusters corresponded to unique kine-

matics that are separable in the embedding space. As such, for
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Figure 1. Environment, task, and electrophysiology for freely moving macaques

(A) Photograph of inside of enclosure permitting freely moving foraging. Up to four feeders were present for the experiment, located at different corners and

requiring different postures to reach.

(B) Schematic of the cage. Sixty-two machine vision cameras provided multiview coverage of every part of the cage.

(C) Structure and timing of one trial. Following a blue initialization screen, subjects pressed a lever and received a fluid reward. After 2 s, the trial reset.

(D) Structure of one block of trials. Four rewards were available. A fifth lever press initiated a 3-min time-out period.

(E) A 3D reconstruction of 13 landmarks using the Open Monkey Studio pipeline.

(F) A 3D model of the recording system superimposed on a subject’s cranium.

(G) A 3D rendering of the prefrontal areas fromwhich neural data were recorded (left), and the corresponding number of recorded neurons (right). Y, subject Y; W,

subject W.
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the remainder of this paper, we will refer to these clusters of

behavior as ‘‘actions.’’ Each action lasted on average 1.63 ±

0.009 s in subject Y and 0.67 ± 0.0025 s in subject W. Note

that the ranges given here are SEM; for SD, the respective values

are 4.96 and 2.14. We acknowledge that different actions have

different durations and that different categories of actions have

different mean durations. We hope that future studies will pro-

ductively explore the variation within and across categories.

Action organization is modular and hierarchical
It has long been supposed that natural behavior in primates has

an inherently hierarchical organization. Indeed, previous work,

including from our own lab, has shown that function is often bet-

ter described as a hierarchical progression rather than as a set of

functionally distinct regions.1–3,35,38–40 We therefore wondered

whether this was also true in this task and, importantly, extended

to unconstrained tasks in which the animals freely choose to

engage in behavior. We next sought to characterize this hierar-

chy in our subjects. Formally speaking, we asked if sets of ac-

tions tend to systemically co-occur, which would indicate the

presence of higher-level organization. To do this, we computed

transition probability matrices for each possible pair of actions

using the actions discovered through embedding (see above).

The transition probability matrix this process produces is, in

graph theoretic terms, a directed graph. In the parlance of

graph theory, nodes that form strong links between one

another are referred to as modules or communities. Because

of this, we refer to sets of actions that have a high probability

of co-transition as ‘‘action modules.’’ The identification of these

modules allows us to sort the transition probability matrix so

that the actions that are part of the same module are adjacent;

graphically, the result of this is that there will be conspicuous

blocks on the diagonal (Figure 4A). These blocks correspond

to action modules.

We then used a recently developed algorithm named Paris,41

which performs hierarchical clustering on the graph derived from

transition probabilities and returns a tree (we will examine the

assumption of hierarchy using the Dasgupta score below). To

determine the number of modules, we cut the tree at several

levels and computed a modularity score for the resulting
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Figure 2. Embedding pose kinematics to identify actions

(A) Pipeline for unsupervised behavioral segmentation. After preprocessing, each dataset of 13 landmark positions was used to extract 91 salient features. We

generated a 2D embedding, which was used for clustering via watershed. Using the learned embedding and cluster labels, we used the training set to re-embed

and re-label all data.

(B) Probability density map for subject Y. Peaks in the heatmap indicate samples with similar postural dynamics. Dotted lines, cluster boundaries from the

watershed algorithm. Numbers, cluster labels.

(C) Same as (B), but for the (re-embedded) testing data for subjects Y (left) and W (right).
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subtrees and chose the number of modules that maximized the

modularity score. The modules that result from this cut give the

highest average within-module action-transition probability and

the lowest average across-module action-transition probability.

These modules maximize the difference between these two

measures. From this process we can identify the most likely

behavioral modules (that is, the ones that fit the data the best).

An example of this process is visualized in Figure 4A. For the

transition probability matrix (Figure 4Ai), modularity was maxi-

mized for five modules (Figure 4Aii). The modular nature of tran-

sitions is evident in the sorted transition probability matrix (Fig-

ure 4Aiii). Note that not all actions were present in this session;
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tures, and their embedding

(A) Example actions from one dataset with an

ethogram of actions (left). Colored backgrounds

represent different actions as determined by an

experimenter. Black line represents the learned

cluster label.

(B) Normalized features computed from pose ki-

nematics from the examples in (A). Color limits

have been scaled to aid in visualization between

features.

(C) Embedding density map from Figure 2B, with

data from the example actions (A and B) overlaid.

Actions were well separated from one another.

we performed clustering and modularity

computations with this in mind.

We tested for the modular organization

of behavior by computing the modularity

score for each session. We found that, in

all sessions, both subjects exhibited sig-

nificant modularity (Figure 4B; randomiza-

tion test, p < 0.001). In other words,

behavior was organized such that specific

modules of actions tended to transition

between one another, but not to actions

outside of the module. The average num-

ber of modules was 4.6 ± 0.08 in subject Y

and 4.83 ± 0.07 in subject W. These

results indicate that subjects’ behavior

was organized into modules, each of

which consisted of stereotyped actions.

We then asked if action modules exhibit

higher-level organization. Examples of hi-

erarchically organized actions are shown

in Figure 4C. Higher-level connections in

this dendrogram show how different ac-

tion modules are related. For example,

the green branch on this tree refers to a

set of closely related actions that can be

labeled as different variants of ‘‘sitting,’’

while the red branch refers to actions

that can be labeled as variants of

‘‘walking.’’ Of course, each of the green

subbranches is a slightly different form

of sitting, and so on. At the higher levels

of the hierarchy are groups of actions that cluster together.

Thus, for example, the algorithm treats different forms of

‘‘passively hanging’’ (blue branch) as being similar to ‘‘sitting’’

(green branch) and more similar to each other than either is to

‘‘walking’’ (red branch). To quantify the degree of hierarchical or-

ganization, we computed the Dasgupta score, which quantifies

the quality of hierarchical clustering on the transition probability

graph.42 A score above chance indicates the observed tree has

high-level components that are distinctly related to one another.

The Dasgupta score was above chance in all sessions in both

subjects (Figure 4D; randomization test, p < 0.001), indicating hi-

erarchical organization of behavior. Note that, to assess
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significance, we used a standard randomization approach. Spe-

cifically, we randomized the time series of cluster labels and

computed the new Dasgupta score. Scores greater than the dis-

tribution of randomized scores were taken as statistically

significant.

One possibility is that the modular and hierarchical organiza-

tion we observed was primarily driven by transitions between

highly similar periods of postural dynamics that were too finely

segmented during embedding. To control for this possibility,

we merged the fine action clusters into progressively coarser

clusters (4–58 clusters) according to the distance of their me-

doids in the embedding space. We found that even coarse clus-

ters exhibited modular and hierarchical organization above

chance (Figure S1). Modularity and hierarchy scores were great-

est using all 59 clusters, and thus all clusters were taken into

consideration for further analysis.

Neurons across the prefrontal cortex encode actions
We next sought to understand how actions are encoded across

six prefrontal regions. We recorded a total of 10,502 neurons

over 196 sessions. Of these, 2,818 neurons were excluded

from the following analyses because preliminary investigations

indicated that their sessions had tracking that was too noisy

for our purposes or because regressing out extraneous variables
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failed (see STAR Methods for exclusion criteria). The remaining

7,684 neurons over 167 sessions were recorded from six struc-

tures in the prefrontal cortex, OFC, vlPFC, dACC, SMA, dlPFC,

and PMd (see STAR Methods and Figure 1E).

We examined the average firing rate of each neuron during

each of the 59 identified actions by averaging each neuron’s re-

sponses across the entire action (see STAR Methods). First, we

computed the spike density time series of each neuron and

downsampled it to match the pose time series (30 Hz). Next, to

isolate activity related to actions, we fit a Poisson generalized

linear model (GLM) to identify neuronal responses related to

task events (such as lever presses, rewards, and cues) and sub-

ject position (in the xyz dimensions). We then used the fit model

to residualize the neuronal time series. All neural analyses were

performed on these residualized and downsampled time series.

We found that neurons exhibited specific firing to individual

actions. An example of rates of neurons recorded in one session

(n = 79 neurons) to six different actions is shown in Figure 5A. In

this session, neurons had distinct firing patterns for each action;

different areas showed distinct patterns as well (Figure 5B). We

operationalized the strength of action encoding of each individ-

ual neuron by performing a Kruskal-Wallis test and extracting

the c2 value. This value reflects how well actions can be dissoci-

ated from one another by the (residualized) firing rate. We opted

for a non-parametric measure as rates were highly non-uniformly

distributed. In this session, posterior regions, such as the PMd,

had the highest average strength of action encoding, while

more ventral and anterior regions, such as dACC, vlPFC, and

OFC, had weaker encoding (Figure 5B).

Indeed, across all sessions and in both subjects, we found ev-

idence of significant action encoding in all six regions tested (Fig-

ure 5C). Specifically, in all six regions, the median c2 was signif-

icantly greater than chance (randomization test, p < 0.001 in all

areas and for both subjects). Furthermore, the mean strength

of encoding differed between regions (ANOVA; subject Y, F =

32.2, p < 0.001; subjectW, F = 170, p < 0.001). These results sug-

gest that action encoding is prevalent across the prefrontal

expanse, even after controlling for task-related activity and sub-

ject position.

Action-encoding strength grows along a dorsal-ventral
gradient
A visual inspection of the data suggests that action coding grows

systematically with the dorsoventral position of the recording site

(Figure 5C). We next sought to formally test this hypothesis by

modeling encoding strength as a function of electrode position

(Figure 6A). For each electrode, we extracted its depth (z posi-

tion, along the vertical axis) and its x (along the coronal plane)

and y (along the sagittal plane) position on the recording grid.

We then fit a linear model, predicting encoding strength (specif-

ically, c2 value) as a function of 3D spatial position (see STAR

Methods).

We found that encoding strength varied systematically with

the position of the electrodes (subject W, F = 293, p = 0, R2 =

0.18; subject Y, F = 70, p = 0, R2 = 0.05). Looking specifically

at each dimension (Figure 6B), we found a significant positive

relationship between encoding strength and electrode elevation

(stronger coding in more dorsal recording sites; subject W,

p < 0.0001; subject Y, p < 0.001). We also found a significant

positive relationship between encoding strength and electrode

anterior-posterior position (stronger coding in more posterior/

caudal locations; subject W, p < 0.0001; subject Y, p < 0.001).

There was an inconsistent correspondence of encoding with

the mediolateral axis (subject Y, p = 0.28; subject W, p < 0.001).

Some locations had much better coverage than others, which

could lead to spurious fits due to large imbalances in the data. To

control for this possibility, we binned encoding values according

to spatial location (for 5, 10, 15, and 20 bins along each dimen-

sion) and then repeated this analysis. We consistently found

that the anterior-posterior and depth dimensions predicted en-

coding strength in both subjects (p < 0.02). On the other hand,

in contrast to the results above, the mediolateral axis consis-

tently did not predict encoding strength (p > 0.25).

In both subjects, recording position significantly predicted en-

coding strength (subject W, F = 293, p = 0, R2 = 0.18; subject Y,

F = 130, p = 0, R2 = 0.096). Encoding was stronger in shallow

rather than deep locations (subject W, p = 0; subject Y, p = 0)

and posteriorly rather than anteriorly (subject W, p = 0; subject

Y, p = 0). As before, encoding along the mediolateral axis was

inconsistent (subject W, p = 0; subject Y, p = 0.62). In our original

analysis, encoding strength ranged from �60 to �600 in subject

Y and from �90 to �900 in subject W; in this analysis, encoding
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strength ranged from �30 to �480 in subject Y and from �30 to

�420 in subject W.

As a further control, we also tested whether the action-encod-

ing gradient arose due to the residualization of rates. We found

an identical pattern of results as before (stronger encoding in

more dorsal and posterior regions, rather than ventral and ante-

rior); however, encoding strength was approximately half that of

the analysis above, highlighting that residualization effectively

isolated activity related to actions. We conclude that, at least

for our analysis methods, actions are most strongly encoded in

posterior and superficial areas, such as the PMd, and weakest

in deep anterior structures, such as OFC.

Systematic relationship between switching-related
patterns and hierarchical position
We next wondered how neurons implement switches between

actions: do they simply identify the action being implemented,

or do they signal the switch as well? We therefore examined

the patterns of neural activity associated with switches between

actions. To this end, we selected a 2-s time window centered on

the moment of switching around each action transition. We

restricted our analysis to this short temporal window to account

for the variable nature of temporal dependencies between ac-

tions. Since for this analysis we considered peri-switch activity,

for any one neuron, we considered segments only where the ac-

tion before or after the switch lasted longer than 200 ms, thus

ensuring that the 400 ms around the switch were not contami-

nated by other switches. We then normalized activity within

and across neurons (see STAR Methods). We adopted this

normalization procedure because, for the hypothesis in ques-

tion, the absolute levels of firing rate pre- and post-switch are

irrelevant. That is, we are interested only in the shape of the tem-

poral envelope, not in the absolute levels. For this reason, we

eliminated that information through averaging. We acknowledge

that these processing steps may appear complex. However,

they are carefully designed to avoid confounding factors.

The average segment-normalized activity is shown in Figure 7.

We found that in all six cortical regions, and in both subjects indi-

vidually, neuronal activity changed after action switches. In the

OFC, which saw the strongest switch effects, the switch pro-

duced a reliable increase in neural activity in both subjects

(0.02–0.06 times greater than the preswitch mean; Figure 7B).

Note that, due to our normalization procedure, this apparent

rise in firing reflects what is more likely the rate of return to a

higher between-switch baseline level of firing. Indeed, additional

analyses (not shown) suggest that the switch-related change is

best described as a switch-evoked suppression in activity fol-

lowed by a return to a variable but generally higher between-trial

baseline rate.

The critical result is that the type of change differed somewhat

between subjects. PMd, SMA, and dlPFC were inconsistent be-

tween subjects, showing relatively increased activity in subject Y
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and decreased activity in subject W. On the other hand, OFC,

vlPFC, and dACC showed a similar trend to increase activity in

both subjects. However, in both subjects, the average difference

between pre- and post-switch activity differed by area and in the

sameway (Kruskal-Wallis test; subject Y, c2 = 48, p < 0.001; sub-

ject W, c2 = 176, p < 0.001). Furthermore, the difference in activ-

ity could be predicted by the position of the electrodes (linear

model; subject Y, F = 10.3, p < 0.001; subject W, F = 49.3,

p < 0.001). The switching difference was greater for deeper

depths (subject Y, p < 0.001; subject W, p < 0.001) and for

more anterior (near significant in subject Y, p = 0.06; subject

W, p < 0.001) locations. In subject W, the difference was also

greater for more lateral locations (p < 0.001); this effect was

not significant in subject Y, although we observed a trend in

the same direction (p = 0.2). Thus, the relative change in activity

after action switches exhibited the opposite trend compared

with action encoding per se, with more ventral regions showing

greater activity post-switch and more dorsal regions showing

less or relatively less activity post-switch.

We considered multiple potential confounds to this analysis.

First, we may have failed to fully regress the effects of task and

reward. More ventral regions such as OFC and dACC have

been particularly strongly associated with reward processing in

the literature.11,43,44 Thus, the relatively higher activity evident af-

ter action switches may have been due to engagement with the

task. Second, there is a large imbalance in possible action tran-

sitions (see Figure 4). Although this is why we opted for the

segment-normalized activity, large imbalances may neverthe-

less affect the result. To control for these possibilities, we did

two things. First, we considered action transitions only in periods

of time when subjects were not engaged with the task for at least

1 s. Second, we calculated a weighted average of activity,

whereby we first calculated action-specific peri-switch activity

for each possible post-switch action and then averaged across

these. After performing these controls, we found a similar pattern

of results, namely, that there was a greater increase in post-

switch activity in more ventral regions such as the OFC and a

more modest (or non-existent) change in more dorsal/posterior

regions such as the PMd (Figure 7C). We also found that the

directionality of results was more consistent between subjects,

particularly for PMd, SMA, and dlPFC. Thus, although there

was some variability in the degree of per-switch activity across

subjects and controls, the relative pattern of results—with

more ventral regions showing increased activity after the

switch—was consistent. Finally, we note that the specific pattern

observed may be driven by a variety of factors, such as a reduc-

tion or increase in velocity at the time of switching; however, the

main finding here, the difference between the different brain

areas, and the systematic relation between hierarchical position

and firing rate pattern, does not suffer from this confound.

DISCUSSION

We developed an automated behavioral classification approach

and used it to investigate the freely moving behavior and neural

correlates of behavior in two rhesus macaques performing a

foraging task. Our analysis pipeline used a set of kinematic fea-

tures calculated over short time windows and a dimensionality
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reduction approach to cluster and identify distinct actions. We

found that behavior in this task comprises 59 distinct actions.

On the basis of transition probabilities between actions, we

were then able to determine that the actions were organized

into action modules, and we were able to further delineate the

full hierarchical structure of this space of actions. We showed

that responses of neurons in six brain regions encoded actions,

with greater encoding in more dorsal structures. We found that

neurons show a characteristic signature of action switching

(a dip in activity aligned to the time of the switch) and that the

pattern of switch-aligned response varies systematically with

dorsoventral position, in the direction opposite the action

encoding.

Perhaps the most striking finding is the two oppositely

pointed hierarchies in the prefrontal cortex. Several observers

have proposed that the prefrontal cortex is characterized by a

ventral-to-dorsal functional gradient in which information is

transformed from abstract to concrete and from conceptual to

motor.1–7,38–40,45,46 Partially supporting this idea, we have shown

stronger task,35 navigational,36 and action-specific (this paper)

representations in more dorsal structures. However, we have

not previously identified any variables that have stronger pat-

terns of modulation in more ventral structures. We do that

here. Specifically, we show that more ventral regions have a

stronger task-switch signal. This signal is common across

different switch types, suggesting it either is amodal or has an

amodal component. This result, then, is consistent with other

proposed task-switching signals, such as those observed in pre-

frontal and parietal circuits.47–53 One explanation for these re-

sults may be that the switch reflects the coordination of activity

across multiple regions, but with the bulk of the relevant cogni-

tive processing most ventrally; another explanation would be

that the switch signals are more latent in more dorsal structures,

perhaps because the switch signals regulate ongoing hierar-

chically intermediate neural activity. The present results also

relate to many ongoing debates in the literature, including those

relating to the OFC. We believe that our results are most aligned

with emerging theories that emphasize the functional continuity

between the OFC and the rest of the prefrontal cortex, rather

than its functional distinctness. Such studies typically emphasize

the role of the OFC as the start or head of a hierarchical process

that transforms goals into actions.

Some recent work has begun to unravel the neural processes

that occur during free movement.16–18,54 Our work builds on this

past work in several ways. First, we were able to measure neural

correlates of actions in an animal with a richer behavioral reper-

toire (59 distinct actions). Second, we are able to draw conclu-

sions about the organization of the primate prefrontal cortex,

whose homology to other species remains debated.55–57 Third,

and relatedly, because of our ability to record in six different re-

gions across most of the prefrontal cortex, we were able to link

encoding of action and action switching to a specific prefrontal

hierarchy. Fourth, our work is performed in macaques, which

have several features that distinguish them from rodents,

including greater relevance to humans due to similar behavioral

repertoires and more homologous prefrontal anatomy. For

example, behavior in macaques is likely to bemore directly inter-

pretable with regard to human behavior than behavior in rodents.

Moreover, macaques are especially important in this regard

because of their pivotal role as a model organism for biomedical

research.58,59

To what extent is the hierarchical pattern of behavior we

observe an artifact of the fact that our subjects are performing

a structured task? A previous paper by our group suggests

that the hierarchical pattern is intrinsic to macaque behavior

and is not imposed by the task itself.30 Specifically, in that study,

we contrasted behavior in two different tasks and in a passive

‘‘no task’’ condition. We found clear evidence of organization

in all three task contexts, although, interestingly, the particular

organization was different in the three. Ultimately, these results

indicate that hierarchical organization of action is unlikely to be

a result of our tasks, but the particular organization we observe

may be.

Recently, several studies of simpler animals have established

the ‘‘physics of behavior,’’ namely, the core elements from

which behavior is composed and the rules that govern how

those elements combine.14 So far, this approach has not

been applied to non-human primates; instead, the study of

the behavior of non-human primates has largely been limited

to highly constrained and simple motoric experiments (such

as reaching and saccades) or otherwise relied on simple heuris-

tics to delineate gross motivational state.60 Our study builds on

this work to discover specific actions via an automatic and un-

supervised approach and delineates their organizational princi-

ples. While it is not surprising that behavior is hierarchically

organized, it is important to have a specific map of the impor-

tant behaviors.

One of the greatest potential benefits for statistical analysis of

highly quantified behavior is in the prospect of automated ethog-

ramming.20,31,61 By ethogramming, wemean the classification of

pose sequences into specific behavior into ethologically mean-

ingful categories such as walking, foraging, grooming, and

sleeping. Currently, constructing an ethogram requires the delin-

eation of ethogrammatical categories, which involves the time-

consuming and careful annotation of behavior by highly

trained human observers.54 Human-led ethogramming is slow,

extremely costly, error prone, and susceptible to characteristic

biases.61–64 For these reasons, it is simply impractical for even

moderately large datasets, collected either in an open environ-

ment or in the home cage.65 These kinds of datasets require

automated alternatives. Automated ethogramming requires

both high-quality behavioral tracking and novel methods applied

to tracked data that result in detection of meaningful categories.

Such techniques have not, until recently, existed for primates.31

Our methods take the raw information needed for ethogram-

ming—pose data—and infer actions and higher-level categories

from it. As such, they provide the first step toward automated

ethogramming in primates. There are a number of steps that

may be taken in the future to increase and refine the repertoire

of discovered behaviors, including improvements in image cap-

ture resolution, more accurate and robust models of pose, and

more varied experimental designs that induce more varied be-

haviors. We are particularly optimistic about the potential bene-

fits of ethogramming for systems neuroscience. Relating

behavior to neural circuits and networks is an important goal in

the field, so being able to quantify behavior more rigorously,
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without sacrificing freedom of movement or naturalness, is likely

to be invaluable for future studies.

Limitations of the study
One limitation of this work is that, while we find neural correlates

of action, we do not investigate the specific type of information

carried in these signals. It may be that neural activity specifies

the details of action in a very detailed way, such as describing

where each limb should be andwhat joint angle should be gener-

ated.66 Conversely, it may be very abstract; it may encode the

action, or even entire sequences of action, and let downstream

structures specify the details. For example, in a study of

C. elegans, Marques and colleagues found that sensorimotor

tuning accuracy changed markedly with the animal’s state.18

These are critical questions that should be addressed in further

study of unrestrained and spontaneous behavior (ideally in a

setup such as in the present study), but are distinct from the

points of interest of the present work. Specifically, we did not

seek to tackle how actions are planned, executed, and moni-

tored, but rather sought to obtain a heuristic comparison of ac-

tion encoding across the brain. By delineating that actions are

more strongly encoded in dorsal structures, whereas more

ventral ones have a stronger signal for action switching, this

work suggests that future studies may focus on ventral struc-

tures for action planning and monitoring and dorsal ones for

execution. Another limitation is that we chose only one animal

as the focus, to generate embeddings. In doing so, we limit our

ability to identify specific idiosyncratic subject-specific actions.

We emphasize here that our goal is not to identify such actions

or their neural correlates. Instead, our goal is to identify to

what extent brain areas encode actions through their neural

activity.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jan Zim-

mermann (janz@umn.edu).

Materials availability
The study did not generate new unique reagents.

Data and code availability
d The processed data reported in this paper has been deposited on Zenodo and is publicly available as of the date of publication.

The DOI is listed in the key resources table.

d All original code has been deposited on Zenodo and is publicly available as of the date of publication. The DOI is listed in the key

resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal model
Twomale rhesusmacaques (Macacamulatta) served as subjects. Subjects were habituated to laboratory conditions, trained to enter

and exit an open arena, and then trained to operate water dispensers. The University Committee on Animal Resources at the Uni-

versity of Minnesota approved all animal procedures. Animal procedures were designed and conducted in compliance with the Pub-

lic Health Service’s Guide for the Care and Use of Animals and approved by the institutional animal care and use committee (IACUC)

of the University of Minnesota.

METHOD DETAILS

Surgical procedures
We placed a cranium adherent form-fitted Gray Matter (Gray Matter Research) recording chamber and a 128-channel microdrive

recording system over the area of interest. We used CT scans which were compared to corresponding CT studies performed

following surgical implantation and placement of the electrodes. The hyperdense appearance of electrodes using the post-recording

CT allowed us to verify that electrodes followed the trajectory of the pre-operative plan. In both cases (that is, for both subjects), the

results of the CT show that this was the case. Specifically, these results indicate that our procedures provided co-registration with an

error of less than 0.5 mm. Since electrodes were advanced incrementally not all locations are verified using this approach, but po-

sitions could be validly inferred using interpolation. In addition, we performed a second complementary method that also confirmed

placement of the electrodes. Specifically, as we have done inmany past studies, as wemoved the electrodes down into the brain, we

made note of the auditorily detectable change from gray to white matter, and reconciled this information with our preoperative CT

scans. In all cases, the two matched. Animals received analgesics and antibiotics after all procedures. Procedures were designed

and conducted in compliance with the Public Health Service’s Guide for the Care and Use of Animals and approved by the institu-

tional animal care and use committee (IACUC) of the University of Minnesota.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Preprocessed data Zenodo https:doi.org/10.5281/zenodo.8067596

Software and algorithms

MATLAB analysis code Zenodo https://doi.org/10.5281/zenodo.8067596
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Electrophysiology
Recordings were made with a 128-channel microdrive system (Gray Matter), targeting a wide swath of the prefrontal cortex ranging

from OFC to PMd. Each electrode was independently moveable along the depth dimension. Neural recordings were acquired with a

wireless datalogger (HH128; SpikeGadgets). The datalogger was triggered to start recording with a wireless RF transceiver

(SpikeGadgets), and periodically received synchronization pulses. Data were recorded at 30 kHz, stored on a memory card for

the duration of the experiment, and then offloaded after completion of the session. Each feeder had local code running the exper-

iment. Task events triggered a TTL pulse, as well as a wireless event code. A dedicated PC running custom code controlled all

feeders, and aggregated event codes. Syncing of all data sources as accomplished via the Main Control Unit (MCU;

SpikeGadgets), which received dedicated inputs from the pose acquisition system (see below), and feeders. Recording sessions

were initiated and controlled by Trodes software (SpikeGadgets). After neural recordings were offloaded, they were synced with

other sources of data via the DataLogger GUI (SpikeGadgets).

Recordings were performed for 4-6 days weekly for a period of 4-6 months. For an initial period of 2-4 weeks, we lowered up to 10

electrodes in each session until each had punctured the dura and their position was well-within cortex as seen from the fMRI recon-

struction. Subjects still performed experiments during this time, but as the signal was noisy, no recordings were performed during

this time.

A typical recording day consisted of multiple stages, including electrode adjustment, an experimental session, and extraction of

the recorded signal. For the duration of the experiment, on each day, we tracked yields on each electrode and visually assessed the

quality of the signal. If an electrode had poor yields for up to 5 days in a row, wewould lower it up to 1mm (ormore if it was intended to

move to a new area).

Spike sorting was performed in a semi-supervised fashion. After an automatic phase which extracted putative units, lab members

then curated the output. Units were retained based on waveform shape, inter-spike interval distribution, and temporal stability. All

units recorded over days on the same electrodes were treated as independent in subsequent analysis of this manuscript. While there

is a risk that this approach slightly inflates the number of independent neurons measured there is currently no way to definitively test

whether the signal recorded over consecutive days stems from the same or different neurons.

Subdivisions of the brain were collapsed to anatomical areas, listed below as defined in the D99 parcellation of the NMT atlas

(Saleem et al., 2021):

d dACC: 24a’, 24a, 24b, 24b’, 24c, 24c’

d vlPFC: 45a, 45b, 46d, 46v, 46f, 12r

d dlPFC: 8ad, 8bd, 8av, 8bs, 9d, 8bm, 9m

d SMA: F3, F6

d PMd: F1, F2, F5, F7, F4

d OFC: 13b, 13m, 13l, 12l, 12m, 12o, 11l, 11m

Task
There were four water dispensing stations (‘‘patches’’) available with programmed delivery schedules. Each patch delivered a fixed

amount of 1.5 mL per lever press. The first four presses, regardless of patch sequencing, were rewarded with water delivery. The fifth

lever press was unrewarded and led to a 3-minute deactivation of the patch. That is, animals could press fewer than five times, leave

to engagewith a different patch, and return to the same patch in the state they left it. No reset or deactivation was applied if the animal

left the patch. A patch was only reset if the subject pressed the lever a fifth time and waited 3 minutes for it to reactivate. Each re-

warded press followed the same programmed sequence.

An activated patch was indicated by a fully blue display. A lever press changed the display to white with a green plus-sign in the

center, an auditory cue was played, and a solenoid opened to dispense reward. After dispensing the solenoid closed, the auditory

cue ended and the green plus-sign disappeared. The screen remainedwhite for two additional seconds before the screen turned blue

again to indicate the availability of another lever press. The fifth lever press was instead followed by the screen immediately turning

white, with no visual or auditory reward cue and no water delivery. However, it is important to note that task engagement was not

required; a subject could choose not to engage with the patches for the entirety of the session.

Otherwise, the measured behavior was simply the free movement of the subject through the arena. On average, subjects pressed

levers 136 ± 8 times (subject Y: 166 ± 7, subject W: 107 ± 9), amounting to roughly 204 mL of water, per session, received for inter-

acting with patches. Prior and concurrent chaired task training of these subjects included several standard chaired laboratory

tasks.67–71

Pose acquisition
Images were captured with 62 cameras (Blackfly, FLIR), synchronized via a high-precision pulse generator (Aligent 33120A) at a rate

of 30 Hz. The cameras were positioned to ensure coverage of the entire arena, and specifically, so that at least 10 cameras captured

the subject with high-enough resolution for subsequent pose reconstruction, regardless of the subject’s position and pose. Images

were streamed to one of 6 dedicated Linux machines. The entire system produced about six TB of data for a two hour session. After

data acquisition, the data were copied to an external drive for processing on a dedicated Linux server (Lambda Labs).
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To calibrate the camera’s geometries for pose reconstruction, a standard recording session began with a camera calibration pro-

cedure. A facade of non-repeating visual patterns (mixed art works and comic strips) was wrapped around two columns of barrels

placed at the center of the room, and images of this calibration scene were taken from all 62 cameras. These images were used to

calibrate the camera geometry (see below). This setup was then taken down, and the experiment began.

QUANTIFICATION AND STATISTICAL ANALYSIS

Pose reconstruction
We first extracted parameters relating to the cameras’ geometry for the session. To this end, we used a standard structure-from-mo-

tion algorithm (colmap72) to reconstruct the space containing the 3D calibration object and 62 cameras from the calibration images,

as well as determine intrinsic and extrinsic camera parameters. We first prepared images by subtracting the background from each

image in order to isolate the subject’s body. Then, 3D center-of-mass trajectories were determined via random sample consensus

(RANSAC). Finally, the 3D movement and subtracted images were used to select and generate a set of maximally informative crop-

ped images, such that the subject’s entire body was encompassed. To reduce the chance that the tire swing would bias pose esti-

mation, we defined a mask of pixels to ignore that encompassed the tire’s swinging radius.

Next, we inferred 3D landmark positions using a trained convolutional pose machine (CPM27) and an additional approach that al-

lowed to augmentation of the original thirteen landmarks with two additional ones.28 The augmented reconstruction resulted in 15

annotated landmarks for each image. We then used these landmark positions to identify poses (see above). We used a loss function

that incorporated physical constraints (such as preserving limb length, and temporal smoothness) to refine landmark localization. We

found residual variability in limb length across subjects after reconstruction, between subjects, particularly for the arm, resulting in

poses that were highly specific to individual subjects. To prevent subject-specific limb lengths from biasing subsequent behavior

identification, we augmented the original 13 inferred landmarks to include two new ones (positions of left and right elbows) using

a supplementary trained CPM model.27 Thus, the augmented reconstruction resulted in 15 annotated landmarks for each image.

Pose preprocessing
We applied a number of smoothing and transformation steps to the 3D pose data. First, we transformed the reconstructed space to a

reference space that was measured using the Optitrack system.27 Then, we ignored any frame where a limb was outside the bounds

of the cage due to poor reconstruction, or residual frames where subject poses were still subject to collapse (defined as where the

mean limb length < 10 cm). Next, we interpolated over any segments of missing data (lasting at most 10 frames, or 0.33 sec) using a

piecewise cubic interpolation. After this, we also removed any segments lasting less than 30 seconds. Note that only a small number

of frames were removed after this whole procedure; specifically, 0.64% of frames on average were ignored. Finally, we rescaled any

limbs in frames where the limb length was >3 standard deviations above the sessionmean to be at most 3 SDs long. Finally, data was

smoothed with a Hampel (median) filter over 5 samples.

Feature engineering
To discover behaviors, we next extracted a number of informative kinematic features, calculated over short time windows. Relevant

parameters were calculated for one session from subject Y that exhibited a wide range of behaviors (similar results were obtained

using other sessions), and then applied to every other session from both subjects.

Some features were in theworld-reference frame. Each of these features, unless otherwise noted, was smoothed with gaussian of

length 10, 30, and 60 frames (0.3, 1, and 2 sec.), resulting in a total of 8x3=24 features.

d Speed: Calculated as the absolute of the numerical derivative of the center-of-mass (COM; defined as the midpoint between

the hip and neck landmark) of the subject.

d Ground Speed: COM speed but just along the ground plane

d Height Speed: COM speed but just along the gravity dimension

d Height Velocity: Numerical derivative of COM along the gravity dimension

d Perpendicularity: scalar representing how vertically oriented the animal was. Calculated as the norm of the cross product of the

spine (hip to neck vector) and gravity dimension. A value of 0 means the subject was vertically oriented, while 1 represents hor-

izontal orientation.

d Height

d Limb-speed variability (height): helps to differentiate ballistic from non-ballistic movements (e.g jumping). Obtained by calcu-

lating the speed of major landmarks (right hand, left hand, right foot, left foot, hip, neck), and then, for each frame, the standard

deviation among these.

d Limb-speed variability (ground): same as above, but calculating speed along the ground plane.

Next, we calculated a set of features in the reference frame of the subject. To this end, we normalized the orientation of poses on

individual frames in a two step procedure; first, by aligning poses to face the same direction, and second, by adding back rotation

corresponding to the perpendicularity of the spine relative to gravity. First, we transformed each pose to face a common direction. To
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do this rotation, we first defined two vectors, one corresponding to the spine (neck to hip landmarks), and the other to the expanse of

the shoulders (left and right shoulder landmarks, which was then centered on the neck landmark). Poses were then rotated such that

the plane defined by these vectors faced the same direction (in essence, so that the torso faced the same direction). Next, we rotated

poses such that the spine had the same original orientation; in other words, if the first step aligned poses where the spine was either

perpendicular or parallel to face the same direction, this step undid that rotation. We found the angle of rotation by comparing the

spine (hip to neck) vector with that of gravity, and then rotated poses along the sagittal plane (ie splitting the subjects body into

left and right). After this procedure, poses were aligned to the same direction, but with their original orientation of the spine (e.g if

sitting or walking, poseswould face in the same direction, but in the first case, the spine is vertical, while in the second, it is horizontal).

From these poses, we calculated the following 67 features:

d Landmarks: we calculated the major sources of variation of the major landmarks (right hand, left hand, right foot, left foot, hip,

neck). We performed a principal component analysis (PCA) of the xyz coordinates of each of these landmarks and extracted the

top 15 PCs.

d Landmark periodicity: to ascertain periods of periodicity in poses, we obtained a time-frequency decomposition of each of the

PCs. We first whitened the time series by performing a smooth differentiation using a Savitsky-Golay filter of order 3 and length

5 (matlab function: sgolay). Then, we obtained the time-frequency decomposition using Morlet wavelets via the Fieldtrip

toolbox (https://www.fieldtriptoolbox.org/) function ft_freqanalysis, 5 cycles and 3 standard deviations of the gaussian. We

obtained 100 frequencies, equally and logarithmically spaced between 0.1 and 15 Hz. We then obtained power values, and

clipped them at a maximum of the 99.9th percentile the entire session. Finally, we reduced the dimensionality of this represen-

tation using PCA with 20 components.

d Segment Length: Segments were defined thus: right hand to right shoulder, left hand to left shoulder, hip to right foot, hip to left

foot, neck to hip, right hand to left hand, left hand to left foot, left foot to right foot, and right foot to right hand. Segment lengths

were smoothed with gaussian windows of length 10, 30, and 60 frames.

d Segment Length Periodicity: We then obtained the time-frequency representation of the (unsmoothed) segment lengths. Spec-

tral decomposition and dimensionality reduction was performed as described above.

This process resulted in a 91-dimensional time-resolved feature set of pose kinematics. To avoid imbalance effects in embedding

due to differently scaled features, we normalized each set of features described above. For each whole set of features, we calculated

a robust z-score (using the median and median absolute deviation, instead of the mean and standard deviation).

Action identification via embedding and clustering
We created behavioral maps by embedding the extracted kinematic features into two dimensions. As a first step, for computational

efficiency, we first constructed a training set using data from subject Y. Specifically, for each session in subject Y, we constructed the

training set by sampling every 6 points (i.e. every 200 ms). We oversampled rare events, either where the instantaneous speed

was > 2, or the height of the subject’s was > 3. Roughly speaking, these corresponded to ballistic movements (such as jumping),

and climbing.

We then found a 2-dimensional embedding of the training set using UniformManifold Approximation and Projection (UMAP37). We

used a euclidean distance metric, and set parametersmin_dist=0.1, n_neighbors=200, and set_op_mix_ratio=0.25, which we found

to be a good balance between separating dissimilar behaviors, while combining similar ones.

To define behavioral clusters, we first estimated the probability density at 200 equally interspersed points both in the first and sec-

ond UMAP dimensions. This produced a smoothed map of the pose embeddings, with clearly visible peaks (Figure 2B). We then

employed the watershed algorithm on the inverse of this smoothed map (Berman et al., 2014). This algorithm defines borders be-

tween separate valleys in the (inverse of) the embedding space. Thus, the algorithm determines sections of the embedding space

with clearly delineated boundaries (i.e. clusters). Samples were then assigned a cluster label according to where they fell within these

borders. Using this procedure, we found a total of 59 behavioral clusters.

Finally, we re-embedded and assigned cluster labels to every sample in both subjects.We performed a k-nearest neighbors (KNN),

finding the 20 nearest neighbors (again using Euclidean distance) of each sample in both subjects to that of the training set. The po-

sition of each sample in the embedding space was themedian of the 20 nearest neighbors in the training samples. On the basis of the

position in UMAP space, we assigned each sample a cluster label. The KNN search was performed using the faiss library with GPU

acceleration (Facebook; github.com/facebookresearch/faiss).

Assessing cluster quality
We next assessed the quality of the extracted clusters by leveraging the Davies-Bouldin index (DBI73). The DBI compares the intra-

cluster dispersion to between-cluster distances. Intra-cluster dispersion is determined by computing the average distance of each

sample of vectors to their clusters’ centroid. These average distances are then compared to the distance between cluster centroid.

The DBI is then a ratio of all intra-cluster dispersions vs between-cluster distance. Thus, a lower DBI indicates that samples within a

cluster are more tightly related to one another than to samples outside of the cluster.
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We leveraged this metric in two ways. First, we determined if on a global scale, the our procedure clustered samples better than

expected by chance. To this end, we first computed the DBI for each individual dataset. We then compared it to a chance distribution

by randomly permuting cluster labels and calculating a randomized DBI. This was performed 20 times. We determined significance

by comparing the observed DBI across datasets to this chance distribution.

Next, we determined if clusters were well-separated locally. We used a similar procedure as above; however, instead of computing

DBI (and chance distribution) over all clusters within a dataset, we computed it for each pair of clusters separately. We report on the

proportion of such cluster-pairs where observed DBI was greater than the randomized DBI.

Assessing behavioral modularity and hierarchy
To discover how postures are organized, we employed a hierarchical clustering algorithm named Paris41 using the sknetwork library

(scikitnetwork.readthedocs.io/). This algorithm employs a distance metric based on the probability of sampling node pairs and per-

forms agglomerative clustering. Paris requires no user-defined parameters (as opposed to another popular graph clustering algo-

rithm, Louvain, which can perform hierarchical clustering according to a user-supplied resolution parameter). It is equivalent to a

multi-resolution version of the Louvain algorithm. The result of this algorithm is a dendrogram describing the relation between

different action transitions (which we will refer to as the behavioral dendrogram). To segment action transitions into modules, we

determined the modularity score (see below) for different cuts of each dendrogram for n=2 to 58 clusters). We then determined mod-

ule assignment by cutting the behavioral dendrogram where the modularity score was maximized

We leveraged two important graph-theoretic metrics to assess behavioral composition:

d Modularity Score: The modularity score describes the degree to which postures transition within, rather than between, mod-

ules. Transition probability matrices with high modularity scores exhibit a high probability of transitions within modules, but not

between modules. Modularity was calculated with the matlab function ‘‘modularity.m’’.

d Dasgputa Score: To assess whether the graph defined by posture transitions truly reflected hierarchical organization, we calcu-

lated the Dasgputa Score (Dasgupta, 2016). The Dasgupta Score is a normalized version of the Dasgupta Cost, which

defines the cost of constructing a particular dendrogram, given distances between nodes. The Dasgupta Score thus provides

quantification of the quality of the hierarchical clustering. We calculated this score using the function ‘‘dasgupta_score’’ in the

sknetwork library.

Matching neural and pose data
To assess how neural activity co-varied with pose, we computed the spike-density function (SDF) of each neuron and downsampled

the activity to match the pose time-series. Specifically, for each neuron, we computed the SDF using the ft_spikedensity function in

the Fieldtrip toolbox, using a gaussian window of [-100 100] ms, sampled at a rate of 30 Hz.

As the environment allowed for free movement in the presence of a task, we sought to isolate neural activity related to postures. To

this end, we regressed out neural activity related to task events at each feeder (Screen On, Lever Press, Reward On, Reward Cue On,

and Timeout On), as well as the XYZ coordinates of the subject (determined as the centre-of-mass of the animals, namely the middle

point between the hip and neck landmarks). We carefully selected out regressor variables as those identified, a priori, to be likely to

cause confounding. We note that in regressing out the lever press, we are reducing our sensitivity to action encoding. However, the

lever press is highly confounded with rewards, so any putative encoding of lever press actions would not be distinguishable from

encoding of reward, which is known to be amajor driver of activity in these regions. We believe that a carefully designed - and neces-

sarily less naturalistic - task could be used to identify the neural correlates of the lever press behavior.

Each regressor was normalized to the range [0 1]. The regressor time series was constructed at a sampling rate of 30 Hz, and

smoothed with a boxcar filter of [-25 to +25 ms]. We then fit a Poisson generalized linear model (GLM) with a log link function.

This model was used to predict the SDF, and the predicted SDF was subtracted from the observed SDF to obtain a residualized

SDF. We excluded any cells from analysis where the Deviance was negative, due to poor model fits. Finally, for missing pose frames,

activity was deleted and not analyzed. All neural analyses, unless otherwise mentioned, were performed on this residualized activity.

Action and action module encoding
To assess action encoding, we compared the average (residualized) activity of neurons, factorized by action. First, for each action

segment in a session, we found averaged activity in that segment. Then, we performed a Kruskal Wallis test, with average segment

activity factorized by action type. We extracted the resultant X2 (chi-squared) value as a metric of the encoding strength, i.e. the de-

gree to which different actions can be separated from one another according to neuronal activity. We opted for the (non-parametric)

Kruskal Wallis test as activity was highly non-normal. We assessed inter-areal differences in encoding strength using an Anova, with

area as a factor.

To assess whether individual areas showed significant action encoding, we opted for a randomization test. For each unit, we first

shifted the action-series of segment activities by a random amount (at least 25%, and at most 75%, of the length of the action series),

and then recalculated the encoding strength. We performed this 20 times. To determine significance in each area individually, we

compared the (observed) mean areal encoding strength to that of the randomized distribution.
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To assess encoding for action modules, we performed the same series of analyses as outlined above but for action modules. First,

in each session, we found n=2-58 action modules, as determined by different cuts of the transition probability clustering. We then

remapped the action series labels according to which action module they were a part of. We then used these action module labels

to find the encoding strength of each neuron.

Assessing peri-switch change in firing rate
To ascertain if neural activity was related to action switches, we computed the average activity around each switch. For each action

switch in a session, we extracted neural activity in a [-1 1] segment centered on the action switch. To avoid times with multiple rapid

shifts, we only considered segments where there were no other action switches in a [-0.2 0.2] sec window around the current action

switch. Then, for each segment, we found the segment-normalized mean. Specifically, for each segment, we found the median and

median absolute deviation of activity in the pre-switch period, and used these values to z-score normalize the entire segment. Then,

we averaged this normalized activity to obtain the per-switch segment-normalized activity of each neuron. Finally, for visualization

purposes (Figure 7A), we averaged this activity for all units according to area. To determine if and how unit activity changed around

the switch, we computed a switching index. Specifically, for each neuron, we obtained the average segment-normalized activity in

the 1 second before and after the switch. The index was defined as the difference between the post and pre activity. To determine if

switching activity differed between areas, we performed a Kruskal Wallis test.

We also considered two possible confounds that may drive our results. First, there was a large imbalance in possible action pairs.

As such, per-switch differences we observed may be driven by only the most common action switches. Second, although we took

care to regress out activity related to task events, some influence may nevertheless have been retained to lagged responses to task

events, or poor model fits. Thus, differences in peri-switch activity may have arisen due to encoding of task events (e.g. of reward).

We controlled for these possibilities in two ways. First, to address imbalances in action pairs, we computed a weighted segment-

normalized activity. Specifically, we segment-normalized activity for every possible pre-switch action, and then averaged across

these to obtain the weighted segment normalized activity. Second, to address possible residual encoding of task events, we only

considered segments where subjects were not engaged with the feeders. To this end, we extracted a time-series of lever presses,

and smoothed this using a 1 second boxcar filter. This gave us a time-series of engagement probability. Then, we selected segments

where engagement probability was strictly zero. This ensured (because of the filtering step) that we only selected periods of time

separated from task engagement by at least 1 sec. Finally, we then performed the same series of analyses on these controlled

segment-normalized activities.

Assessing the hierarchy of encoding across cortex
Our analyses suggested a gradient of postural encoding, withmotor areas exhibiting more specific postural tuning, andmore anterior

prefrontal areas exhibiting more global encoding of the embedding space. To make concrete this observation, we performed a linear

regression, predicting encoding strength corrected KL values as a function of the neurons’ location. Specifically, the X (anterior-pos-

terior) and Y(lateral-medial) coordinate was defined as the position of the electrode on the electrode grid, while the Z (dorsal-ventral)

position was defined as the total turning depth. This was justified as electrodes were equally spaced in a grid.

To account for possible effects driven by imbalances in recording location, we performed the same analysis after binning encoding

value. Specifically, we binned encoding values into a 3-dimensional grid, using 5, 10, 15, or 20 bins along each spatial dimension. We

then performed the same regression, predicted (binned) encoding strength from the XYZ bin index.

We performed the same series of analyses on the switching index values as well, to ascertain whether changes in firing rate as a

result of action switches differed according to recording location.
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Supplementary Figure 1. Behavioral modularity and hierarchy are above chance 
even for coarse clustering 
 (A) Modularity scores after merging actions based on their embedding distances - 
both for observed (black) and randomized (gray) transition matrices - for subject Y. 
Dots indicate significance (randomization test, p<0.05). Behavioral modularity is above 
chance even for coarse clustering. (B) Same as (A), but plotting the Dasgupta score, a 
measure of hierarchy. Hierarchy is evident even for coarse clustering. (C-D) Same as 
A-B, but for subject W. 
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