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efficacy in the human prefrontal cortex

Alexander B. Herman,1,10,* Elliot H. Smith,2,3 Catherine A. Schevon,3 Mark J. Yates,4 Guy M. McKhann,4

Matthew Botvinick,5 Benjamin Y. Hayden,6,8,9 and Sameer A. Sheth7,8,9
SUMMARY

The ability to perform motor actions depends, in part, on the brain’s initial state. We hypothesized that
initial state dependence is a more general principle and applies to cognitive control. To test this idea,
we examined human single units recorded from the dorsolateral prefrontal (dlPFC) cortex and dorsal ante-
rior cingulate cortex (dACC) during a task that interleaves motor and perceptual conflict trials, the
multisource interference task (MSIT). In both brain regions, variability in pre-trial firing rates predicted
subsequent reaction time (RT) on conflict trials. In dlPFC, ensemble firing rate patterns suggested the
existence of domain-specific initial states, while in dACC, firing patterns were more consistent with a
domain-general initial state. The deployment of shared and independent factors that we observe for con-
flict resolution may allow for flexible and fast responses mediated by cognitive initial states. These results
also support hypotheses that place dACC hierarchically earlier than dlPFC in proactive control.

INTRODUCTION

Our actions are determined by how stimulus-driven responses interact with ongoing neural activity.1 In the motor system, one expression of

this idea is the initial state hypothesis, which holds that motor control involves a series of dynamical states and that motor control requires a

particular state.2–7 Variability in performance, typically assessed with reaction times, corresponds partly to variability in pre-trial firing rates

because those firing rate patterns reflect how close (or far) the brain’s state is to the optimal response-driving initial state. We hypothesized

that these principles might apply not just tomotor systems but also to cognitive processes such as adaptive response to conflict. This hypoth-

esis is motivated by recent theories that cognition can be seen as an extension of motor processing and that dynamical principles relevant to

the motor system may apply to non-motor processes, including higher-level cognitive processes.8–10 It is further motivated by evidence that

responses to a stimulus can depend on the state of the brain even before stimulus onset.4,11,12

Conflict detection and resolution are a pair of complementary cognitive behaviors whose neuronal basis is beginning to be under-

stood.13–18 Conflict typically refers to a competition between possible stimuli for attention or action and generally evokes slower reaction

times, increased error rates, and disengagement from alternative tasks.19,20 When this refocusing of mental resources occurs in response

to a conflict detection process, it is often referred to as reactive control; proactive control, on the other hand, refers to the pre-emptive deploy-

ment of mental resources to support conflict detection and resolution.21–24 By analogy to the motor initial state hypothesis, we hypothesized

that proactive control depends in part on variability in neural processes in conflict-relevant brain regions before the appearance of the

conflict-inducing stimuli.22,25

Among conflict-responsive brain regions, the dorsal anterior cingulate cortex (dACC) and dorsolateral prefrontal cortex (dlPFC) are among

the most studied brain regions.16,18,26–28 Both regions are in the dorsal prefrontal cortex, showing systematic changes in hemodynamic

response, local field potential (LFP), and firing rate in the presence of conflict (ibid.). dACC is most consistently implicated in sensing conflict

during reactive control, while dlPFC has been observed to signal conflict demands during proactive control and, to a lesser extent, reactive

control.19,23,24,26,27,29 Consistent with this literature, we have recently proposed that these two regions play somewhat distinct, albeit comple-

mentary, roles in conflict detection and resolution during reactive control.18 Specifically, we proposed that dACC is hierarchically earlier and

thus carries a signal more akin to conflict detection and that dlPFC is more associated with implementation (see also26,30).
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Figure 1. Multi-source interference task (MSIT) design, recording locations, and behavioral results

(A) Basic task design. Participants fixate on a central cross and then see a visual cue consisting of three numbers and must identify the unique number with a

button push. The ‘‘correct response’’ is the left button if the target is 1, middle if 2, right if 3. Four example cues are shown here, and in each case, the target

is ‘‘2’’ and the middle button is the correct response. This is most obvious for the first cue (‘‘none’’), where there is no conflicting information. In the other

three examples, conflicting information makes the task more difficult. First, incongruence between the location of the target number in the 3-digit sequence

and the location of the correct button in the 3-button pad produces spatial (Simon) conflict (orange). Second, the distracting presence of numbers that are

valid button choices (‘‘1,’’ ‘‘2,’’ and ‘‘3’’) produces flanker (Eriksen) conflict (green). Trials can also simultaneously have both types (blue).

(B) The visual cues are associated with one or more sensorimotor responses. Every cue has a correct response (the button press corresponding to the unique

target). Cues can also have one or more distractor responses (the button press corresponding to task-irrelevant spatial information (Simon) or flanking

distractors (Eriksen)). If and only if the correct and distractor responses do not match, then the cue causes conflict because only one button response can

ultimately be chosen.

(C) Diagram of the intracranial implant including a stereotactically placed intra-cerebral depth electrode with clinical macroelectrodes (blue segments) along the

shaft fromdlPFC to dACC andmicrowire electrodes (orange star) in dACC. A, anterior; L, lateral; CS, central sulcus; SFS, superior frontal sulcus; IFS, inferior frontal

sulcus. The UMA and tungsten microelectrode recording locations are schematized as a purple square on the surface of dlPFC.

(D) The average (mean) response times across participants in the four task conditions and (right) themean response times within each participant. Bars = standard

error across participants.
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Here, we examined firing rates of single neurons in dACC and dlPFC during proactive and reactive control while humans performed the

multi-source interference task (MSIT), a task that manipulates two different forms of conflict, a motor (Simon) type and a perceptual (Eriksen

flanker) type.31 In both regions, firing patterns before the trial (and before the presentation of the conflict-inducing stimuli) predicted the abil-

ity to resolve conflict in the upcoming trial; firing rate patterns in both regions after stimulus onset during reactive control also predicted con-

flict response times. During both the preparatory and response periods, the dACC appears to use a general code for conflict responding; the

pattern of cell firing rates associated with better Simon performance also predicted better Eriksen performance. In dlPFC, by contrast, these

codes were unrelated (orthogonal). Similarly, in dACC, the preparatory code was weakly related to the response code, while in dlPFC initial

and response codeswere orthogonal. Overall, these results endorse the idea that conflict resolution reflects the interaction between stimulus-

driven reactive activity and ongoing fluctuations in proactive pre-trial activity, supports the initial state hypothesis for cognitive actions, and

suggests distinctmechanisms in dACCanddlPFCwithwhich the brain can respondboth flexibly and efficiently to different conflict conditions.
RESULTS

Behavior

Weexamined responses of single neurons recorded in dACC and dlPFC in human patients undergoing intracranial monitoring for epilepsy or

deep brain stimulation for movement disorders (Figure 1A). Task-related responses in subsets of this dataset were described in three earlier
2 iScience 26, 108047, November 17, 2023
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Figure 2. dACC neurons in the pre-trial period signal the speed of upcoming responses in a conflict-general manner

(A) PSTHs of example neuron 112 showing significantly higher pre-trial activity before fast (red) responses than slow (blue) responses across all conflict trial types

(t-test on z-scored data). The dotted line indicates the start of fixation, and the solid vertical line indicates the stimulus onset.

(B) Time course of F-statistic for the area-level modulation of firing rate by conflict-general response time in dACC. Stars indicate the statistically significant peaks

with highest F-value. Inset: Bar graph showing the AICweight for three different models for response time encoding, showing that dACC area-level activity is best

described by a conflict-general model.

ll
OPEN ACCESS

iScience
Article
studies, but pre-trial responses, the main focus of the present study, were not analyzed.14,18,32 Participants performed the multi-source inter-

ference task (MSIT), a task that involves two independently manipulated types of conflict (Figure 1B). We collected data from 18 human

participants. One group (dACC dataset) had 10 participants (all with epilepsy), while the other group (dlPFC dataset) had 8 participants (7

with Parkinson’s Disease, 1 with epilepsy). One patient overlapped between the groups.

The validity of this task as a conflict manipulation has been demonstrated.14,18,31,33 Therefore, we only briefly summarize the evidence that

the task manipulates conflict. Most importantly, the median reaction time in the Simon trials (1.33 s) was significantly slower than no conflict

trials (1.3 s, p < 0.001, z = -13.7, rank-sum = 1x109). Likewise, reaction times in the Eriksen trials (1.55 s) were slower than in no-conflict trials

(p < 0.001, z = -53.6, rank-sum= 1x109) and Simon trials (p < 0.001, z = -39.5, ranksum= 1x109. Finally, reaction times on both-conflict trials (1.73

s) were slower than on Simon trials (p < 0.001, z = -62.4, rank-sum = 19x108) as well as compared to Eriksen: p < 0.001, z = -25.2, rank-sum =

1x109). (Note that all differences survive Bonferroni correction).
Pre-trial single neuron correlates of conflict

We recorded from138 neurons in dACCand 378 neurons in dlPFC.Our goal was to determinewhether firing rate responses of neurons before

the start of the trial predict subsequent reaction time. Consider, first, the firing rate responses of an example neuron shown in Figure 2, taken

fromdACC.Mean firing rates in the pre-trial period in this neuronwere greater before faster reaction time trials than slower reaction time trials

on trials for all conflict conditions (fast RT trials: 4.7 spikes/sec, slow RT trials 4 spikes/sec, p = 0.0194, t-test on z-scored data) and did not differ

by conflict condition (Figure 2A). In our second example neuron, taken fromdlPFC,mean firing rates were significantly greater before the start

of faster reaction time trials than before slower reaction time trials in Eriksen-only but not Simon-only conditions (fast Eriksen RT trials:

1 spikes/sec, slow Eriksen RT trials: 0.5 spikes/sec, p = 0.001, t-test on z-scored data; fast Simon RT trials: 0.7 spikes/sec, slow Simon RT

trials: 1.1 spikes/sec, p = 0.18, t-test on z-scored data, Figures 3A and 3B). Specifically, we ran a median split on reaction times post hoc
iScience 26, 108047, November 17, 2023 3
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Figure 3. dlPFC neurons in the preparatory period signal the speed of upcoming responses in a conflict-specific manner

(A and B) PSTHs of example neuron 159 showing significantly higher pre-trial activity before fast (red) responses than slow (blue) responses in (b) Eriksen-only but

not (a) Simon-only conflict trials (t-tests on z-scored data).

(C) Time course of F-statistics for the area-level modulation of firing rate by conflict-specific response time in dlPFC. Stars indicate the statistically significant peaks

with highest F-value. Inset: Bar graph showing the AICweight for three different models for response time encoding, showing that dlPFC area-level activity is best

described by a conflict-specific model.
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and separated firing rates on those two categories. (As described later in discussion, firing rates in these neurons also predicted the reaction

time in a continuous model.).

Pre-trial population correlates of conflict

To explore these effects at the population level, we fit the spike count data within the entire pre-trial window for all neurons and all trials with a

Poisson distribution generalized linear mixed-effects model (GLME) with patient number as a random effect and cell number as a random

effect nested within patient.34 Units with firing rates <0.1Hz over this period (22 dlPFC, 17 dACC) were excluded. Our analyses controlled

for prior trial conflict type because conflict level on the previous trial can modulate preparatory neural responses and lead to trial-to-trial
4 iScience 26, 108047, November 17, 2023
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adjustments, such as post-error slowing and conflict-adaptation/trial congruency effects (Horga et al., 2011; Sheth et al., 2012; Oehrn et al.,

2014). Our analyses also controlled for previous trial reaction time (RT) to removepossible effects of slowdrifts in arousal (Sklar et al., 2017).We

estimated the dispersion for the Poisson distribution.We includedparticipant and neuron as nested randomeffects to account for differences

in contributions from single participants and single neurons to the group-level effects. All p values are reported as Bonferroni or false discov-

ery rate (FDR) adjusted with the Benjamini-Hochberg method.35 For each region, we compared three nested models: 1) a model with only a

main effect for response time; 2) amodel with an interaction term to capture conflict-general response timemodulations in firing rate; and 3) a

model with conflict-type specific interaction terms. For each area, we computed the Akaike Information Criterion weights for each of the three

models and computed the weight ratio for eachmodel, which ranges from 0 to 1 and reflects the evidence in support of that model relative to

all other models considered.36 The closer the weight ratio is to 1, the more that model is preferred over others. We found the conflict-general

model to the dACC activity (Figure 2B inset, conflict-type general AIC weight 0.999), while the conflict-type specific model activity in dlPFC

(Figure 3C inset, conflict-type specific AIC weight 0.997). Comparing the conflict-type general and specific models directly, we found that in

dACC the conflict-general model was orders of magnitude more likely than the conflict-type specific model (0.999/9 3 10�43), and in dlPFC

the conflict-type specific model was 300 times more likely than the conflict-type general model (0.997/0.003).

In dACC, examining the coefficients of the best fitting conflict-general model, we found that firing rate encoded variation in response time

in the presence of any conflict (interaction, F = 6.6, DF = (1,30063), p = 0.036, Bonferroni-corrected permutation test). Previous trial reaction

time and conflict did not significantly modulate the firing rate in dACC. In dlPFC, examining the best fitting conflict-specific model revealed

that firing rate encoded overall response time at a trend level (main effect, F = 4.3, DF = 1, 1.083 10^5, Bonferroni corrected p = 0.051) and

conflict-type specific response time significantly (interaction, F= 13.5,DF= 2, 1.083 10^, corrected p < 0.001). Previous trial reaction time and

conflict condition modulated firing rate in dlPFC (F = 20.0, DF = 2, 1.083 10^5, Bonferroni corrected p < 0.001; F = 5.1, DF = 1, 1.083 10^5,

Bonferroni corrected p = 0.052, permutation tests). We performed the same analysis on only correct trials, and the results were similar (dlPFC

conflict-type F = 13.1, Bonferroni corrected p < 0.001, dACC conflict-general F = 5.29, Bonferroni corrected p = 0.017).

We next sought to determine whether response time encoding followed a dynamic, temporally specific time course in each brain area.We

performed a slidingwindowGLME analysis for each area using the best-fittingmodel with 500ms analysis windows and 100ms steps.We FDR

corrected the resulting p values across all time windows tested. In dACC, we found that pre-trial coding for conflict-general response time

showed a clear peak at 1500ms before stimulus onset (1000ms before fixation cue onset) (F = 10.97, corrected p < 0.001, permutation test). In

dlPFC, pre-trial coding for conflict-specific response time showed a clear peak at 750 ms before stimulus onset (250 ms before fixation cue

onset) (F= 12.2, corrected p = 0.0016, permutation test, Figure 3C). In the response period, coding for conflict-general response time in dACC

peaked at 1000ms after stimulus onset (F= 11.79, corrected p< 0.001, permutation test, Figure 2B), while in dlPFC, coding for conflict-specific

response time peaked at 2000 ms after stimulus onset (F = 26.4, corrected p = 0.0016, permutation test, Figure 3C).

We questioned whether pre-trial firing rates could predict upcoming reaction time and whether neuronal coding for firing rate prediction

differed by conflict type, as suggested by the results above. We were specifically interested in whether such predictive coding of RT differed

between conflict conditions on the single-cell level. To answer this question, we fit GLMEmodels with reaction time as the dependent variable

and included cell identity as a fixed effect. For dACC, we analyzed the peak time in the conflict-general model, while from dlPFC, we analyzed

the peak coding time from the conflict-specific model. In dACC, we found that firing rate predicted reaction time in the presence of any con-

flict at the area level (conflict-general model, F = 13.1, DF = 1, 30215, corrected p < 0.001) and single-cell level (F = 2.18, DF1 = 127, DF2 =

30215, corrected p < 0.001). In dlPFC, we found that firing rate predicted reaction time for both Eriksen and Simon conditions at the area level

(F = 42.926, DF1 = 1, DF2 = 1.072e05, corrected p < 0.001, F = 6.89, DF1 = 1, DF2 = 1.072e05, corrected p = 0.009) and exhibited highly sig-

nificant single-cell effects for both conditions (F = 1.49,DF1 = 355,DF2 = 1.072e05, corrected p < 0.001, F = 1.39,DF1 = 355,DF2 = 1.072e05,

corrected p < 0.001). These results indicate that pre-trial firing rates predict task performance, and that this predictive coding is more general

in dACC yet stronger and more task-specific in dlPFC.
Orthogonal coding for two forms of conflict preparation in the dorsolateral prefrontal cortex

Having found that both area and single-cell activity in dlPFC contains conflict-type specific signals, we wondered if population-level activity in

dlPFC might contain a conflict-type general signal. Here, we distinguish between area and population level as the difference between the

group-level effect of firing rate on response time and the structure of single-cell firing rate coding in a population. To test this possibility,

we asked how ensemble codes for predicting the resolution of Simon and Eriksen conflict, derived from the conflict-type specific model,

were related. To do this, we calculated a vector of GLM regression weights for each distractor type across neurons. We call these vectors

the pre-trial tuning weight vectors. We then compared these vectors by computing the angle between the Simon and Eriksen coefficients

vectors. We tested these analyses on a pseudo-population of cells (n = 85) with significant coefficients for either conflict condition in the

response or preparatory period, as well as on all cells, excluding cells with coefficients more than 4 absolute deviations from the median

(n = 12 cells excluded); this approach allows us to include contributions from all relevant neurons, even those with real effects that do not

pass the strict significance threshold for individual coefficients; this approach thus has better signal-to-noise (and is moderately less suscep-

tible to Type II errors) than analyses that focus on cells that cross a significance threshold.37We found that in the conflict-significant population

of dlPFC neurons, the angle q between the codes for Simon and Eriksen is slightly greater than but not significantly different from 90� (q =

98.4�, corrected p = 0.194, two-tailed permutation test; Figure 4A). This result is consistent with the orthogonal coding of the initial conditions

that support proactive conflict resolution. In other words, the preparatory activity predisposing to fast responding to Simon conflict occurs

along an axis orthogonal to Eriksen conflict. We found a similar result in the entire population, where qwas 93.8� and not significantly different
iScience 26, 108047, November 17, 2023 5
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Figure 4. Orthogonal conflict-response coding in dlPFC and colinear coding in dACC. A 0� angle represents complete collinearity and 90� orthogonality
(A–D) the angle between Eriksen and Simon coding vectors in dlPFC, showing orthogonal coding (blue circle, blue numbering, and red line). The significance of

the difference from a 90� (blue italics) was computed from permutation testing. The null distribution is shown with gray circles.

(E–H) The same but for dACC, showing colinear coding. p-values for all subpanels are calculated from two-tailed permutation tests.
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from 90� (corrected p = 0.240, two-tailed permutation test). In the response period window, we again found orthogonal coding, with q = 96.6�

(corrected p = 0.304, two-tailed permutation test) for the conflict-significant population and 92.5� for all cells (corrected p = 0.447, two-tailed

permutation test).

Partially co-linear coding for conflict in the dorsal anterior cingulate cortex

If dACC encodes conflict-responding in a domain-general fashion, as suggested by our model comparison results above, we expect to

observe co-linearity between Eriksen and Simon coding vectors in a conflict-specific model, in contrast to dlPFC. To test this hypothesis,

we performed a similar analysis as done for dlPFC, computing the angles between conflict-coding vectors. We found that Eriksen and Simon

codes for all cells were partially co-linear in both the preparatory (q = 63.2�, corrected p = 0.019 two-tailed permutation test) and response

periods (q = 75.5�, corrected p = 0.010, two-tailed permutation test), and for both conflict-significant and all cell populations in the response

period (q = 86.6�, corrected p = 0.391 two-tailed permutation test; q = 71�, corrected p < 0.001 two-tailed permutation test, respectively).

To determinewhether the angles fromdACCdiffered from those fromdlPFC, we compared the dACC angles to bootstrap distributions of

angles from dlPFC. This is important to confirm because the difference between a significant and non-significant effect is not necessarily itself

significant.38 Confirming our hypothesis, we found the angles for both the conflict-significant and all cell populations differed significantly in

the preparatory period (both corrected p < 0.001, one-tailed permutation tests), as well as the response period (corrected p = 0.049 and

p < 0.001, respectively, one-tailed permutation test).

Preparatory and response period neural codes for reaction time in the dorsolateral prefrontal cortex are orthogonal

Lastly, we examined the degree to which the dlPFCpreparatory state resembled the response state by computing similaritymeasures for their

respective sets of coding vectors.We found that the pre-trial and response-tuning weight vectors were orthogonal in dlPFC and co-linear in
6 iScience 26, 108047, November 17, 2023
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Figure 5. Orthogonality between preparatory and response conflict-response coding in dlPFC and partial collinearity in dACC

(A and B) A 0� angle represents complete collinearity and 90� orthogonality. Coding vector angles for significant cells in dlPFC for (a) Simon condition and (b)

Eriksen condition.

(C and D) The same thing but for dACC. Legend is the same as for Figure 5. p-values for all subpanels are calculated from two-tailed permutation tests.
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dACC (Figure 5). In dlPFC, the angle q between Eriksen codes for conflict-preferring cells during the preparatory period was 88.1� and not

significantly different from 0 (corrected p= 0.544, two-tailed permutation test, Figures 5A and 5B). It was 87.2� for the Simon condition and not

significantly different from 0 (corrected p = 0.366, two-tailed permutation test). The codes for all cells were more aligned in the Simon

condition (q = 82�, corrected p = 0.014, two-tailed permutation test) but fully orthogonal in the Eriksen condition (q = 88.1, corrected p =

0.520, two-tailed permutation test). In dACC (Figures 5C and 5D), we found a high level of co-linearity between preparatory and response

codes in both the Simon (conflict-significant population q = 50.6�, corrected p < 0.001; all cells q = 61.6�, corrected p < 0.001; two-tailed per-

mutation tests) and the Eriksen conditions (conflict-significant population q= 66.9�, corrected p < 0.001; all cells q= 72.4�, corrected p < 0.001;

two-tailed permutation tests). The orthogonality of preparatory and response states in dlPFC and the co-linearity in dACC may suggest

complementary mechanisms for minimizing interference between states while allowing for the efficiency of a shared representation.
DISCUSSION

We examined the responses of single neurons in human dACC and dlPFC during a task that interleaved and combined two kinds of conflict,

Simon and Eriksen. We found that firing rates in both areas before the trial predict the efficacy of cognitive control, as inferred from reaction

times. The fact that ensemble responses predict reaction time before the trial (and presumably before task-driven cognition) supports the

hypothesis that successful cognitive control reflects, in part, the ability to transition through specific brain states. By controlling for prior trial

condition and reaction time, we showed that these brain states do not simply reflect adaptation or drift in arousal but rather history-indepen-

dent patterns predisposing to efficacious responding. Different models best described how dACC and dlPFC firing predicted upcoming

conflict response. dACC activity was best described by a conflict-type general model, while dlPFC utilized a neural code specific for con-

flict-type. Moreover, the response predicting activity in dACC emerged before that in dlPFC, further implicating dACC as higher than dlPFC

in a hierarchically organized brain system for conflict resolution.

Studies ofmotor control in rodents and non-humanprimates have shown that variability in the firing rates of neurons inmotor cortex during

movement preparation predicts variability in subsequent movements.3,5,7 This body of work has given rise to the ‘‘initial state hypothesis,’’

which posits that neural firing patterns behave as dynamical systems, and the trajectory of neural dynamics, therefore, depends on the initial

state of the system.4,6 One implication of this theory is that preparatory neural states can therefore be optimized to produce a desired behav-

ioral outcome efficiently. If similar principles apply to neural dynamics during cognitive tasks, this suggests that preparatory activity may also

be optimized to support the efficient application of cognitive control.

Indeed, a growing literature suggests neural patterns subserving cognition are also consistent with dynamical systems models.39 It has

been further proposed that cognitive performance may reflect a similar dynamical system view; however, this view has been difficult to

test. We recently demonstrated that, in asynchronous choice, neurons in two core reward areas show subspace orthogonalization, a neural

process previously associated only with the motor cortex.40 Here we sought to test the hypothesis that the implementation of a cognitively

controlled action would require the implementation of an initial state specific to the action. Our finding that ensemble patterns in dACC and

dlPFC predict response speed supports the extension of the initial state hypothesis to cognitive control over behavior. Furthermore, the

orthogonal initial states we observe in dlPFC for different types of conflict resolution suggest that they can be optimized for the performance

of specific kinds of controlled behaviors.
iScience 26, 108047, November 17, 2023 7
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These results have some bearing on the ongoing quest to understand the relationship between the dACC and dlPFC. These two regions

are anatomically strongly interconnected, and both appear to play essential roles in higher cognition, but distinguishing their functions has

proven difficult.We and others have proposed that theymay be thought of as two stages along a hierarchy of control, with dACCbeing earlier

than dlPFC in the hierarchy.16,18,28,32 In this framework, dlPFC should be closer to control and dACC closer to detecting the need for control

(i.e., conflict monitoring). These ideas are consistent with the idea that an earlier, general conflict signal would be found in dACC while a later

implementation-specific initial state would be found in dlPFC. Speculatively, representations of task-relevant information may become more

fully conflict-type specific and orthogonalized between dACC and dlPFC.10 Here, we found evidence that the preparatory neural coding char-

acterizing efficient responding may gain conflict-specificity between dACC and dlPFC. These findings thus shed light on where the essential

neuronal computations that the human prefrontal cortex carries out to detect and resolve conflict to implement controlled behavior.

What are the implications of preparatory brain states for conflict resolution?One possibility is that initial states that predict response times

reflect changes in arousal that are either spontaneous or the result of adaptations to the previous trial. While attractive for its simplicity, this

explanation would not explain the persistence of the effect after controlling for trial history, nor would it explain the conflict type-specific

nature of the initial states in dlPFC. Rather, our results suggest that the computations that perform conflict resolution are not only distinct,

as implied by the divergent neural state space trajectories we found previously in this task32, but are facilitated by shared and independent

factors. In this task, participants do not have knowledge of whether the upcoming trial will have one form of conflict or the other or both.

Maintaining shared and independent preparatory factors for conflict types in attentional states, independent of the past, may allow the brain

to respond flexibly to unpredictable challenges whileminimizing interference between the processes needed to respond to those challenges.

Such a combination of shared and independent processes may also allow for optimizing the costs relative to the demands of cognitive

control.16 Why would preparatory states vary from trial to trial? The simplest explanation is spontaneous fluctuations due to noise. Another

possibility is that participants or brain regions are making predictions, possibly subconsciously, about the demands of the upcoming trial,

perhaps based on longer trial history than the recent past controlled for in this study.

Our results also touch on the notions of proactive and reactive control in the dual mechanisms of control theory.21,22,25 According to this

influential theory, the brain implements separate, independent processes for biasing (proactive) and shaping (reactive) responses to conflict.

Proactive control is conceived of as either an extended goal or transient anticipatory state, while reactive control is a transient post-stimulus

corrective response. Variability in the application of these control strategies is central to this theory. Our finding that both pre-trial and post-

stimulus ensemble patterns predict conflict resolution in a recent history-independent manner and do so in an orthogonal fashion in dlPFC

and a co-linear fashion in dACC is consistent with distinct proactive and reactive roles for these areas. The temporally specific patterns of

activity we found are more consistent with a transient proactive state, reflecting the trial-to-trial nature of this task, which does not depend

on the maintenance of temporally extended task contexts or goals.

Instead of imposing changes in task conditions and measuring differences in the resulting patterns of control as is often done, our design

made use of natural trial-to-trial variability in response speed to infer control states. Whereas proactive and reactive control are typically

conceptualized as task-amodal, we found evidence that they comprise domain-general and control-type specific components. The task-spe-

cific pre-trial coding we found in dlPFC relative to dACC is consistent with past results showing that dlPFC plays a more prominent role in

proactive control.24 Another important implication of our results is that proactive control may be implemented in part through the formation

of initial states. Different forms of proactive control may drive neural activity in dlPFC into different initial states that bias toward efficient task-

specific responding.

Conclusion

Our results suggest that not only does the initial state of neural activity before the cognitive act of conflict resolution support efficient respond-

ing in a pro-activemanner, but it also does so through both conflict-general and conflict-type-specificmechanisms. It is intriguing to wonder if

the collinearity we observe in dACC may contribute to untangling stimulus-action processes before full orthogonalization in dlPFC during

implementation.10 Previouswork in premotor cortex has shown that the neural state space during respondingpredicts reaction times inmotor

tasks.41 We found that these optimal initial states share some structure with the optimal responding states, suggesting they support optimal

response trajectories. Future studies may examine whether initial states play a role in guiding how neural state-space trajectories may sepa-

rate by response time differently depending on the specific cognitive computations the brain performs.

Limitations of the study

Our results must be interpreted considering significant limitations. Our study population consisted of people with epilepsy or Parkinson’s

Disease, so the generalization of our results to other populations remains speculative. Although we have controlled as much as possible

for individual variability with the use of mixed-effects models, we are ultimately constrained by the small sample size of patients available

for single-unit recordings and the variability of the number of neurons recorded from participants. Similarly, we lacked sufficient data to

include a control area in our analysis. Lastly, although we found that dlPFC and dACC were better described by different models (conflict-

response specific and conflict-response general, respectively) when we examined a single hierarchical model including both areas, we did

not find a statistically significant difference between the conflict-coding in these areas. One possibility for this null result is that we lacked

the power to detect a true difference; another is that although these areas are best fit by different models, the coefficients found by applying

the samemodel are not different, two findings that are not mutually exclusive. Thus, the functional dissociation our results point to remains to

be definitively established.
8 iScience 26, 108047, November 17, 2023
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

fitGLME function for computing generalized

linear mixed effect models

MATLAB, the Mathworks, Inc

Psychtoolbox MATLAB functions

for task administration

http://psychtoolbox.org/

Offline Sorter (OLS) software Plexon, Inc, Dallas, TX; USA
RESOURCE AVAILABILITY

Lead contact

Alexander B. Herman (herma686@umn.edu).

Materials availability

No new reagents were generated in this study.

Data and code availability

� Data supporting the findings of this study are available from the lead contact upon request.
� Code supporting the findings of this study is available at https://github.com/abherman99/pretrial_RT_prediction.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

We studied two cohorts of participants. Cohort 1 consisted of 9 patients (1 female) with medically refractory epilepsy who were undergoing

intracranial monitoring to identify seizure onset regions. Before the start of the study, these participants were implanted with stereo-enceph-

alography (sEEG) depth electrodes using standard stereotactic techniques.One ormore of the sEEGelectrodes in this cohort spanneddorso-

lateral prefrontal cortex (dlPFC) to dorsal anterior cingulate cortex (dACC; Brodmann’s areas 24a/b/c and 32), as well as single unit recordings

in dACC (see below; Data Acquisition).

Cohort 2 consisted of 8 patients: 7 (1 female) with movement disorders (Parkinson’s disease or essential tremor) who were undergoing

deep brain stimulation (DBS) surgery, and one male patient with epilepsy undergoing intracranial seizure monitoring. The entry point for

the trajectory of the DBS electrode is typically in the inferior portion of the superior frontal gyrus or superior portion of the middle frontal

gyrus, within 2 cmof the coronal suture. This area corresponds to dlPFC (Brodmann’s areas 9 and 46). The single epilepsy patient in this cohort

underwent a craniotomy for placement of subdural grid/strip electrodes in a prefrontal area including dlPFC and was implanted with a Utah-

style microelectrode array (UMA) as part of a study on the neuronal dynamics of seizures.

All decisions regarding sEEG and DBS trajectories, craniotomy location, and microelectrode array position were made solely based on

clinical criteria. The Columbia University Medical Center Institutional Review Board approved these experiments, and all participants

provided informed consent prior to participating in the study.

METHOD DETAILS

All participants performed the multi-source interference task (MSIT; Figure 1A). In this task, each trial began with a 500-millisecond fixation

period. This was followed by a cue indicating the correct response as well as the distractor response. The cue consisted of three integers

drawn from {0, 1, 2, 3}. One of these three numbers (the ‘‘correct response cue’’) was different from the other two numbers (the ‘‘distractor

response cues’’). Participants were instructed to indicate the identity of the correct response number on a 3-button pad. The three buttons on

this pad corresponded to the numbers 1 (left button), 2 (middle) and 3 (right), respectively.

TheMSIT task therefore presented two types of conflict. Simon (motor spatial) conflict occurred if the correct response cue was located in a

different position in the cue than the corresponding position on the 3-button pad (e.g., ‘0 0 1’; target in right position, but left button is correct

choice). Eriksen (flanker) conflict occurred if the distractor numbers were possible button choices (e.g., ‘3 2 3’, in which ‘‘3’’ corresponds to a

possible button choice; vs. ‘0 2 0’, in which ‘‘0’’ does not correspond to a possible button choice).

After each participant registered his or her response, the cue disappeared, and feedback appeared. The feedback consisted of the target

number, but it appeared in a different color. The duration of the feedback was variable (300 to 800 milliseconds, drawn from a uniform
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distribution therein). The inter-trial interval (including the 500ms fixation/preparatory period) varied uniformly randomly between 1.5 and 2

seconds.

The task was presented on a computer monitor controlled by the Psychophysics MATLAB Toolbox (www.psychtoolbox.org; The

MathWorks, Inc). This software interfaced with data acquisition cards (National Instruments,) that allowed for synchronization of behavioral

events and neural data with sub-millisecond precision.

Single unit activity (SUA) was recorded from a combination of two techniques. The DBS surgeries were performed according to standard

clinical procedure, using clinical microelectrode recording (Frederick Haer Corp.). Prior to inserting the guide tubes for the clinical recordings,

we placed the microelectrodes in the cortex under direct vision to record from dlPFC, (IRB-AAAK2104). The epilepsy implant in Cohort 2

included a UMA implanted in dlPFC (IRB-AAAB6324). In all cases, data were amplified, high-pass filtered and digitized at 30 kilosamples

per second on a neural signal processor (Blackrock Microsystems, LLC).

QUANTIFICATION AND STATISTICAL ANALYSIS

SUA data were re-thresholded offline at negative four times the root mean square of the 250 Hz high pass filtered signal. Well-isolated action

potential waveforms were then segregated in a semi-supervised manner using the T-distribution expectation-maximization method on a

feature space comprised of the first three principal components using Offline Sorter (OLS) software (Plexon Inc, Dallas, TX; USA). The times

of threshold crossing for identified single units were retained for further analysis.

Single units with average firing rates < 0.1Hz during the 2-second pre-trial period were excluded from the analysis (22 dlPFC, 17 ACC).

We first fit gamma distributions to the reaction times and excluded reaction times with a less than 0.005 probability following.42 For each

model, we centered and scaled continuous predictor variables by z-scoring.We analyzed correct and incorrect trials to prevent false positives

fromdata-censoring effects and performed confirmatory analyses on correct trials only, as noted.We conducted our initial analysis andmodel

selection during the entire pre-trial period. We excluded neurons with firing rates < 0.1Hz over this period (22 dlPFC, 17 dACC). We fit gener-

alized linearmixed effectsmodels with the fitglme function inMATLAB, with total spike count in the 2s pretrial period as the response variable,

reaction time, conflict, and their interaction, as well as previous trial conflict and reaction time, as the fixed effects, and participant ID and

diagnosis as random intercepts, and cell ID as a random intercept nested within participant. We also examined a model with random slopes

for the response time but for both dACC and dlPFC these models had worse model fits (higher AIC values). We compared three alternative

models: a model with only a main effect of reaction time (RT)

FRt � RTt + RTt� 1 + ConflictTypet� 1 + ð1jSubjIDÞ + ð1jCell1D : Subj1DÞ
a model with interaction term between RT and a binary variable for the presence of any kind of conflict (Eriksen, Simon or both)

FRt � RTt + RTt + Conflictt + Conflictt + RTt� 1 + Conflictt� 1 + ð1jSubjIDÞ + ð1jCell1D : Subj1DÞ
and a model with an interaction term between RT and a categorical variable with different levels for different conflict types

FRt � RTt + RTt : ConflictTypet + ConflictTypet + RTt� 1 + ConflictTypet� 1 + ð1jSubjIDÞ + ð1jCell1D : Subj1DÞ
using Wilkinson notation, where FR is firing rate (here the spike count over the window) on all trials, RT is reaction time, t is the trial, Conflict-

Type is a categorical variable with different levels for each type of conflict, and Conflict is a binary indicator variable for trials with any conflict,

SubjID is the participant ID number andCellID is the cell number, with the syntax 1| indicating a randomeffect.We used a Poisson distribution

for the firing rate (count over the specified window) and a log link function, and estimated the dispersion for the model from the data to allow

for over or under-dispersion.37 We also examined models with diagnosis (epilepsy or Parkinson’s Disease) included as an additional random

effect, but this produced no change in the model likelihoods. We compared these models by their AIC weights (Wagenmakers and Farrell,

2004). We identified the best fitting model as the model with the highest AIC weight ratio for all pairwise comparisons. To assess the magni-

tude and significance of fixed effects we performed ANOVA tests on the GLMEs with the MATLAB ANOVA function (McCullagh and Nelder,

2019) with alpha Bonferroni-adjusted for the number of fixed effects and computed p-values relative to a shuffled surrogate distribution.

We used the winning models from the whole-period analysis above for the sliding window-analysis and applied those models to 500ms

windows sliding in steps of 25ms. For each step, we computedp-values relative to a shuffled surrogate distribution.We then FDR corrected all

p-values across all time windows. The peak window for each area in both the pre-trial and response period was taken as the window with the

highest (statistically significant) F-statistic from an ANOVA on the GLME coefficients.

For the reaction timeprediction/decoding, we includedCell ID as a fixed effect to test for single-cell encoding and a group-level effect.We

analyzed the peak time windows from the sliding-window analysis for pre-trial and response periods. Based on the results from the firing rate

model, we utilized a conflict-type general model for dACC, with one coefficient = 1 for any type of conflict

RTt � FRt � Cell1D + FRt � Conflictt � Cell1D + Conflictt + ConflictTypet� 1 + ð1jSubjIDÞ
and a model with separate, additive conflict terms for Simon and Eriksen conditions for dlPFC.

RTt � FRt � Cell1D + FRt � EriksenTrialst � Cell1D � EriksenTrialst + FRt � SimonTrialst

� Cell1D + SimonTrialst + ConflictTypet� 1 + ð1jSubjIDÞ
Here, we used a normal distribution with a log link function.
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To compare the neural codes for conflict conditions, we fit individual GLM models to each neuron:

RTt � FRt + FRt � ConflictTypet + ConflictTypet + RTt� 1 + ConflictTypet� 1

entered the model coefficients into individual vectors for each conflict condition. We computed the angle between the vectors as the inverse

of the cosine similarity using the MATLAB formula

Ang = real

�
acosd

�
max

�
min

�
dotðBð:; 1Þ--meanðBð:;1ÞÞ;Bð:;2Þ--meanðBð:; 2ÞÞÞ
normðBð:; 1Þ--meanðBð:;1ÞÞÞ � normðBðL; 2ÞÞ

�
;1

�
; --1

���

where B(:,1) is the first vector and B(:,2) is the second vector. We excluded points more than 4 median absolute deviations from the median,

excluding 12 cells. We used non-parametric statistics because we did not in general, have enough data to characterize our data distributions

fully. We randomized the vector entries and computed correlations between the randomized vectors to form null distributions (2000 permu-

tations). We computed p-values for the real measurement relative to the corresponding null distribution (permutation test). To compare

angles and correlations, we constructed bootstrap distributions with resampling (5000 samples) and compared the medians of the resultant

distributions to the measured angle in the other condition with the non-parametric Wilcoxon rank sum test.
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