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Abstract
Previous studies have shown that the pupils dilate more in anticipation of larger rewards. This finding raises the possibility 
of a more general association between reward amount and pupil size. We tested this idea by characterizing macaque pupil 
responses to offered rewards during evaluation and comparison in a binary choice task. To control attention, we made use of 
a design in which offers occurred in sequence. By looking at pupil responses after choice but before reward, we confirmed 
the previously observed positive association between pupil size and anticipated reward values. Surprisingly, however, we 
find that pupil size is negatively correlated with the value of offered gambles before choice, during both evaluation and 
comparison stages of the task. These results demonstrate a functional distinction between offered and anticipated rewards 
and present evidence against a narrow version of the simulation hypothesis; the idea that we represent offers by reactivating 
states associated with anticipating them. They also suggest that pupil size is correlated with relative, not absolute, values of 
offers, suggestive of an accept–reject model of comparison.
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Introduction

The pupils systematically dilate and constrict in response 
to ongoing changes in mental state. Pupil diameter, there-
fore, provides a window into many important mental func-
tions, ranging from attention (Hoeks and Levelt 1993; van 
den Brink et al. 2016) and working memory (Kahneman 
and Beatty 1966) to mental effort (Just et al. 2003; Varaz-
zani et al. 2015) and surprise (Lavín et al. 2013; Preuschoff 
et al. 2011). Researchers have even used pupil size to gain 
insight into the mechanisms of subjective time perception 
(Suzuki et al. 2016), rate of learning (Nassar et al. 2012), 

and multi-sensory integration (Rigato et al. 2016), as well as 
decision making (de Gee et al. 2014; Einhauser et al. 2010, 
2008).

Previous research supports the idea that there is a posi-
tive relationship between reward magnitude and pupil size. 
Specifically, pupil size increases in anticipation of rewards 
and increases more in anticipation of larger primary rewards 
(Rudebeck et al. 2014). The positive relationship between 
pupil size and anticipated rewards is also observed in antici-
pation of conditioned reinforcers (Rudebeck et al. 2014; Var-
azzani et al. 2015). These results suggest that there may be a 
positive relationship between pupil size and reward amount 
that is observed for types of rewards other than anticipated 
ones.

We are particularly interested in the relationship between 
the encoding of anticipated (having been chosen) and offered 
(not yet chosen) rewards in the brain. Both types of reward 
are imagined, not experienced, and both can be used to influ-
ence upcoming actions. Despite these similarities, they are 
also somewhat conceptually distinct: offered rewards are 
not certain (they are contingent on choice) while anticipated 
rewards are generally certain. Offered rewards provide infor-
mation that is used to directly drive choice, while anticipated 
rewards generally drive other processes, including prepara-
tion for reward receipt, savoring, and learning.
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One hypothesis about the relationship between these 
reward types, the simulation hypothesis, holds that when 
we choose, we represent offered values and we do so by 
reactivating a domain-general representation of the expe-
rience of receiving the reward (Wang and Hayden 2017; 
Kahnt et al. 2010; Howard et al. 2015). There is some evi-
dence in favor of this hypothesis (Howard et al. 2015; Xie 
et al. 2016; Kahnt et al. 2010; Schoenbaum et al. 2003; Stal-
naker et al. 2006). However, at least some data suggest that 
there are key qualitative differences in the way that offered 
and experienced rewards are represented (McNamee et al. 
2015; Farovik et al. 2015; Tsujimoto et al. 2012; Wang and 
Hayden 2017). These data then would predict that responses 
to reward in key reward regions differ depending on the con-
text in which the reward was presented. We hypothesized 
that these contextual differences would show up in other 
domains, such as pupil size.

To examine the relationship between pupillary encod-
ing of offered and anticipated values, we took advantage 
of an existing dataset based on two macaques performing a 
sequential choice task with risky options (Azab and Hayden 
2017, 2018). We found that pupil size decreased in response 
to higher value offers—the opposite pattern observed for 
anticipated values. Consistent with this observation, pupil 
size following the second offer decreased less when the first 
was high value—a finding that is parsimoniously explained 
by the idea that pupils encode relative value, the key decision 
variable for accept–reject choices (Strait et al. 2014; Azab 
and Hayden 2017). Following choice, but before reward, the 
relationship between reward and pupil size reversed, repli-
cating the findings of previous studies: it increased on trials 
in which a large reward was anticipated, and on trials in 
which a large reward was more likely. These findings indi-
cate that anticipated and offered rewards are disambiguated 
at the level of the pupillary reward response and suggest 
that they are processed in at least partially distinct ways in 
the brain.

Methods

Some of the data for dorsal anterior cingulate cortex record-
ings were previously published (Azab and Hayden 2017, 
2018; Strait et al. 2016; Farashahi et al. 2018; Blanchard 
et al. 2018). All data and analyses presented here are new.

Surgical procedures

All procedures were approved by the University Committee 
on Animal Resources at the University of Rochester and 
were designed and conducted in compliance with the Public 
Health Service’s Guide for the Care and Use of Animals. 
Two male rhesus macaques (Macaca mulatta: subject B age 

6; subject J age 7) served as subjects. A small prosthesis for 
holding the head was used. Animals were habituated to labo-
ratory conditions and then trained to perform oculomotor 
tasks for liquid reward. Surgery was performed to implant a 
Cilux recording chamber (crist instruments) over the dorsal 
anterior cingulate cortex and subgenual anterior cingulate 
cortex. Position was verified by magnetic resonance imag-
ing with the aid of the Brainsight software (Rogue Research 
Inc.). Animals received appropriate analgesics and antibi-
otics after all procedures. Throughout both behavioral and 
physiological recording sessions, the chamber was kept ster-
ile with regular antibiotic washes and sealed with sterile 
caps. All recordings were performed during the animals’ 
light cycle between 8 am and 5 pm.

Behavioral task

Monkeys performed a two-option gambling task (Azab and 
Hayden 2017, 2018). The task was similar to one we have 
used previously (Strait et al. 2014, 2015), with two major 
differences. First, monkeys gambled for virtual tokens—
rather than liquid rewards. And, second, outcomes could be 
losses as well as wins. Our previous research confirms that 
subjects’ behavior is consistent with understanding of the 
link between colors and rewards and size and probability in 
this task and in ones with similar structures, including more 
complex foraging-like tasks—indicating that task under-
standing is not likely to be a limiting factor here (Azab and 
Hayden 2017; Blanchard and Hayden 2015; Blanchard et al. 
2015; Sleezer et al. 2016; Ebitz and Hayden 2016).

Two offers were presented on each trial. Each offer was 
represented by a rectangle 300 pixels tall and 80 pixels 
wide (11.35° of visual angle tall and 4.08° of visual angle 
wide). 20% of options were safe (100% probability of either 
0 or 1 token), while the remaining 80% were gambles. Safe 
offers were entirely red (0 tokens) or blue (1 token). The 
size of each portion indicated the probability of the respec-
tive reward. Each gamble rectangle was divided horizontally 
into a top and bottom portion, each colored according to the 
token reward offered. The size of each portion indicated the 
probability of the respective reward. Gamble offers were 
thus defined by three parameters: two possible token out-
comes and probability of the top outcome (the probability 
of the bottom was strictly determined by the probability 
of the top). The top outcome was 10, 30, 50, 70 or 90% 
likely. The possible combinations of outcomes were: + 3/0, 
+ 3/− 1, + 3/− 2, + 2/+1, + 2/0, + 2/− 1, + 2/− 2, + 1/+1, 
+ 1/0, + 1/− 1, + 1/− 2, 0/0. Each non-safe combination was 
equally likely to occur.

Six initially unfilled circles arranged horizontally at the 
bottom of the screen indicated the number of tokens to be col-
lected before the subject obtained a liquid reward. These cir-
cles were filled appropriately at the end of each trial, according 
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to the outcome of that trial. When 6 or more tokens were col-
lected, the tokens were covered with a solid rectangle while 
a liquid water reward was delivered directly into the subject’s 
mouth. Tokens beyond 6 did not carry over, nor could number 
of tokens fall below zero.

On each trial, one offer appeared on the left side of the 
screen and the other appeared on the right. Offers were sepa-
rated from the fixation point by 550 pixels (27.53° of visual 
angle). The side of the first offer (left or right) was randomized 
by trial. Each offer appeared for 600 ms and was followed by 
a 150 ms blank period. Monkeys were free to fixate upon the 
offers when they appeared (and in our observations almost 
always did so). After the offers were presented separately, a 
central fixation spot appeared and the monkey fixated on it 
for 100 ms. Following this, both offers appeared simultane-
ously and the animal indicated its choice by shifting gaze to 
its preferred offer and maintaining fixation on it for 200 ms. 
Failure to maintain gaze for 200 ms did not lead to the end of 
the trial, but instead returned the monkey to a choice state; 
thus, monkeys were free to change their mind if they did so 
within 200 ms (although in our observations, they seldom did 
so). A successful 200 ms fixation was followed by a 750 ms 
delay, after which the gamble was resolved and a small liquid 
reward (100 µL) was delivered—regardless of the outcome 
of the gamble—to sustain motivation. This small reward was 
delivered within a 300 ms window. If 6 tokens were collected, 
a delay of 500 ms was followed by a large liquid “jackpot” 
reward (300 µL) within a 300 ms window, followed by a ran-
dom inter-trial interval (ITI) between 0.5 and 1.5 s. If 6 tokens 
were not collected, subjects proceeded immediately to the ITI.

Each gamble included at least one positive or zero outcome, 
ensuring that every gamble carried the possibility of a win. 
This decreased the number of trivial choices presented to sub-
jects, and maintained motivation.

Eye position was sampled at 1000 Hz by an infrared eye-
monitoring camera system (SR Research). Stimuli were 
controlled by a computer running Matlab (Mathworks) with 
Psychtoolbox (Brainard 1997) and Eyelink Toolbox (Cornelis-
sen et al. 2002). Visual stimuli were colored rectangles on a 
computer monitor placed 57 cm from the animal and centered 
on its eyes (Fig. 1a). A standard solenoid valve controlled the 
duration of juice delivery. The relationship between solenoid 
open time and juice volume was established and confirmed 
before, during, and after recording.

Statistical methods for behavior

Subjective values for each gamble were estimated based on 
subjects’ choices in each test session according to the formula:

This formula comes from Yamada et al. (2013), although 
since our task includes both wins and losses, we fit a 

(1)SV = p ∗ win
� + (1 − p) ∗ loss

�

parameter α for wins and another parameter note β for losses. 
A value for α greater than 1 and a value for β less than 1 both 
indicate risk seeking. Both subjects were risk seeking on 
average (values of α > 1 or β < 1 both indicate risk seeking; 
subject B: average α = 1.21, average β = 0.076; subject J: 
average α = 1.60, average β = 0.022). For the remainder of 
this study, “value” refers to subjective value.

We fit logistic regression models of behavior to predict 
choice of the first vs. second offer. To ensure that subjects 
do, in fact, pay attention to both offers, we fit a model where 
the value of the first and second offers were the predictors of 
interest, while also including the number of tokens already 
accumulated, the side the first offer appears on, and the 
choice eventually made to explain any variance these vari-
ables might contribute to:

where F(x) is the probability of choosing offer 1, x3 is the 
number of tokens, x4 is the side of the first offer, and x5 is 
the choice that was made. To determine whether subjects 
pay attention to all features of an offer, we use an extended 
model with the three variables characterizing each offer (the 
two possible outcomes, and the probability of the larger out-
come) included as predictors, controlling for the same vari-
ables mentioned above.

where F(y) is again the probability of choosing offer 1, y1, 
y2, and y3, respectively, are the top and bottom outcomes 
and probability of the top outcome for offer 1, y4, y5, and 
y6, respectively, are the top and bottom outcomes and prob-
ability of the top outcome for offer 2, and then y7, y8, and y9 
are the additional factors of token number, first offer side, 
and eventual choice. We fit such a model for each behavioral 
session and obtain the regression weights associated with 
each of the variables of interest. We then test the vector of 
these variables across all sessions using a one-sample t test, 
to determine whether they differ significantly from zero.

Trials lasting longer than the statistical ‘upper fence’—
that is, the third quartile plus 1.5× the interquartile range—
of trial durations were regarded as lapses and discarded.

Statistical methods for pupil size analyses

We sampled subjects’ pupil diameter every 10 ms for analy-
sis. Raw pupil data were first processed to remove aberra-
tions due to blinks or measurement artifacts—outlier data 
points were excluded on the basis of raw size (> 99.9th 

(2)

F(x) =
1

1 + e−(�0+�1(offer1EV)+ �2(offer2EV)+ �3x3+ �4x4+ �5x5)

(3)

F(y) =
1

1 + e−(�0+�1y1+ �2y2+ �3y3+ �4y4+ �5y5+ �6y6+ �7y7+ �8y8+ �9y9)
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percentile), velocity of change (> 99th percentile), and accel-
eration of change (> 99th percentile).

Pupil sizes were then converted into z scores on a trial-
by-trial basis using the mean and standard deviation during 
a 500 ms normalization period, immediately preceding the 
start of the trial except in the instances indicated below. This 
length of time was chosen because it was the shortest length 
of the ITI and, therefore, the longest normalization window 
that could be applied to the beginning of all trials. This 
normalization method was based on previously published 
approaches (Geng et al. 2015; Rudebeck et al. 2014) and 
also served the purpose of controlling for the luminance of 
the tokens present on the screen (we also controlled for this 
possibility through checking and showing no relationship, 
see below). During the ITI, tokens were the only object on 
the screen and they remained visible on the screen through-
out each trial. To analyze the effect of offer 1 value during 
offer 2 (Fig. 3), we normalized to the 500 ms preceding 

offer 2 onset to isolate offer-1-related pupil fluctuations and 
control for differing baselines. To analyze pupil effects fol-
lowing choice (Fig. 5a, b), we normalized pupil size to the 
500 ms preceding the choice epoch and to analyze changes 
in pupil size immediately following feedback (Fig. 5c, d), 
we normalized pupil size to the 400 ms preceding feedback 
appearance (the second half of the post-choice delay).

We assessed the effect of offer luminance on our results 
in three ways. First, we measured the screen luminance in 
cd/m2 of the color of each offer, using a Tektronix J6523-2 
luminance probe, under lighting conditions identical to those 
of the task. The screens emitted minimal baseline luminance 
and there were no other sources of light during the task 
(figure S1). Second, we estimated the relative luminance 
of each offer presented to the monkey by multiplying each 
of the two halves’ proportion of the offer area with their 
respective luminance measures. We then calculated a mul-
tiple regression of the luminance and value of each offer 

Fig. 1  Task and Choice Behavior. a Token gambling task. Subjects 
viewed two probabilistic offers in sequence, chose between them, and 
then gained or lost tokens based on the result. Each offer contained 
two possible outcomes, represented by the color of the bars, with the 

probabilities of those outcomes represented the areas of those colors. 
b Choice behavior. Both subjects displayed an understanding of the 
task and the relative values of offers. (Color figure online)
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against the mean pupil response from 150 to 350 ms follow-
ing both offer 1 and offer 2 presentation on a trial-by-trial 
basis. Third, using the same time window, we performed a 
Pearson correlation of offer luminance and pupil response 
across all trials.

Offers came in several possible in a range of sizes. In 
our Results, ‘large’ and ‘small’ offers refer to those with 
subjective values greater than or less than the median offer, 
respectively. The onset time of offer value-related effects 
on pupil size was calculated by comparing the differences 
between the means of each trial type to shuffled data (10,000 
permutations, without replacement) (Efron and Tibshirani 
1993). Similar approaches have previously been used to 
determine the significance of pupil size changes (de Gee 
et al. 2014; Nassar et al. 2012). The pupil response based on 
a given variable was defined as the first time bin in which the 
mean pupil sizes were significantly different at the thresh-
old of α = 0.005 (two-sided permutation test). Effects with 
a latency of less than 250 ms were not considered, as this is 
approximately the shortest amount of time in which visual 
stimuli can induce pupil responses (Gamlin et al. 1998). 
Mean pupil size for large vs. small values of the first and sec-
ond offer was calculated as the mean ± SEM over the 150 ms 
following the initial pupil response. The significance of the 
difference between pupil size distributions was calculated 
using a two-sided student’s t test (α = 0.05).

To calculate the time course of the pupil response, we 
calculated the mean time of maximum pupil size difference 
between the two given conditions. Mean and SEM values 
of the maximum difference time were derived from boot-
strapped data (10,000 permutations). The time window for 
bootstrapped data was, at a minimum, the second half of 
the offer epoch. In the case that significant pupil response 
(two-sided permutation test, p < 0.005) was observed into 
the delay following the offer epoch, the upper bound of the 
time window was either the final time bin at which a signifi-
cant pupil response was observed or the onset of the next 
trial epoch, whichever occurred first. For the analysis of the 
impact of offer 1 value on pupil size following offer 2, we 
used a one-sided permutation test to determine the boot-
strapping window to isolate the positive modulatory effect.

Multiple linear regression against pupil size was per-
formed with the following regressors: offer 1 subjective 
value, offer 2 subjective value, number of tokens possessed, 
and chosen offer side. Trial-by-trial correlations with pupil 
size were performed using the Pearson correlation coeffi-
cient. Correlation analyses involving offer value and pupil 
size were performed on a trial-by-trial basis, with pupil size 
calculated as the mean value during the indicated time bin. 
An additional regression was performed to assess the impact 
of pupil size during the pre-offer 2 normalization window on 
observed changes in pupil size following offer 2. The regres-
sors for this analysis were offer 1 subjective value, offer 2 

subjective value, and the mean pupil size during the 500 ms 
leading up to offer 2 onset as calculated from pupil size data 
that were normalized to the ITI.

To analyze the relationship between pupil size and num-
ber of tokens possessed, we excluded trials following jackpot 
rewards.

We performed choice probability analysis on mean pupil 
size during the 200 ms following offer 2 offset (the start 
of the pre-choice delay) from each trial. We divided trials 
according to whether offer 1 or offer 2 was chosen and calcu-
lated d-prime using ROC analysis (Britten et al. 1996, 1992). 
Choice probability was calculated as the area under the ROC 
curve. We then generated confidence intervals (α = 0.005, 
two-tailed) by performing similar analysis on 10,000 sam-
ples of bootstrapped data.

Results

Choice behavior

We recorded data from two rhesus macaques in a gambling 
task with asynchronously presented offers (Fig. 1a). Some 
data from this task were previously published but the data 
presented here are all new (Azab and Hayden 2017, 2018). 
Both subjects were familiar with the task and appeared to 
understand it (Fig. 1b). Specifically, both subjects chose 
the higher value offer more than chance (subject B: 79.5% 
over n = 6,906 trials; subject J: 75.3% over n = 12,617 trials, 
p < 0.0001 in all individual sessions). Choices reflected the 
values of both offers according to a logistic regression model 
that used offer values to predict choices (see “Methods”, 
Eq. 2). Both subjects showed positive regression coefficients 
for the first offer (one-sample t test of coefficients for offer 
1 value per session: subject B: t = 16.7; subject J: t = 27.3, 
both p < 0.0001) and the second offer (subject B: t = 19.7; 
subject J: t = 24.0, both p < 0.0001). Moreover, the values 
of the two possible outcomes within each offer as well as 
the probabilities of those outcomes all predict choices (one-
sample T test for coefficients of all 6 offer parameters: all 
p < 0.0001; see “Methods”, Eq. 3).

Increased offer value decreases pupil response

Figure 2a, b shows the average pupil size following large and 
small first offers (large and small were defined relative to 
median offer size). During the epoch of interest (the 150 ms 
following onset of the response), responses were negatively 
correlated with the value of the first offer in both subjects 
(subject B: r = − 0.098, R2 = 0.010, p < 0.0001; subject J: 
r = − 0.022, R2 = 0.0005, p = 0.017). Immediately follow-
ing onset of the offer (from 0 to 200 ms after it appeared on 
the screen), pupil size did not differ (this is not surprising 
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because of the well-known slowness of pupil responses; t 
= − 0.076, p = 0.939 for both subjects). However, following 
the presentation of the first offer, the pupil response to large 
vs. small offers began to diverge rapidly. Using a sliding 
time window and a two-sided permutation test (α = 0.005), 
we found that the pupil response to offer 1 value emerged 
at 340 ms (subject B) and 310 ms (subject J). The peak dif-
ference occurred at times 652.3 ± 0.2 ms (subject B) and 
398.1 ± 0.3 ms (subject J) after offer 1 onset.

At the time of peak difference, the average pupil size fol-
lowing large offers was significantly smaller than that follow-
ing small offers (subject B: − 2.006 ± 0.090 for large offers 
vs. − 0.905 ± 0.081 for small offers, two-sided Student’s 
t test, t = − 8.633, p < 0.0001; subject J: − 3.269 ± 0.076 
for large offers vs. − 2.830 ± 0.065, two-sided Student’s t 
test, t = − 4.334, p < 0.0001). A regression of offer 1 SV 
(unbinned) against average pupil size at the time of peak 
difference in each subject confirms this result (subject B: 
β = − 0.262 ± 0.033, t = − 7.872, p < 0.0001; subject J: β 
= − 0.059 ± 0.026, t = − 2.293, p = 0.022).

The same pattern was observed in the second offer epoch 
(Fig. 2c, d). During the focal epoch, responses were nega-
tively correlated with the value of the second offer in both 
subjects (subject B: r = − 0.028, R2 = 0.001, p = 0.029; 
subject J: r = − 0.045, R2 = 0.002, p < 0.0001). The differ-
ence in pupil response on the basis of offer 2 value emerged 
at 430 ms following the appearance of the offer for subject B 
and 310 ms for subject J. The peak of the difference occurred 
at 630.1 ± 1.2 ms (subject B) and 520.3 ± 0.6 ms (subject 
J). At this time, for subject B, the average size of the pupil 
following large offers was − 2.234 ± 0.101, while the size 
following small offers was − 1.711 ± 0.102 (these values are 
different, two-sided Student’s t test; t = − 3.413, p = 0.0006). 
For subject J, the average pupil size following large offers 
was − 4.102 ± 0.091 while the size following small offers 
was − 3.534 ± 0.084 (these values are different, two-sided 
Student’s t test; t = − 4.501, p < 0.0001). A regression of 
offer 2 SV (unbinned) against average pupil size at the time 
of peak difference in each subject confirms this result (sub-
ject B: β = − 0.087 ± 0.039, t = − 2.211, p = 0.027; subject 
J: β = − 0.164 ± 0.031, t = − 5.212, p < 0.0001).

Pupil responses were not driven by variations 
in luminance in our task

Our offers were indicated by color, and thus varied, albeit 
quite modestly, in luminance. Our statistical methods were 
designed to eliminate confounds associated with variations 
in luminance (see “Methods”). Nonetheless, even without 
this control, we found no main effect of luminance in our 
dataset. While the average effect of offer value was strong 
and significant in both subjects (see above), luminance did 
not have significant effects (Figure S1A and B). Specifically, 

the luminance of offer 1 did not drive responses in either 
subject B (linear regression, β = − 0.002 ± 0.002, t = 
− 0.888, p = 0.375) or in subject J (β = − 0.002 ± 0.001, t 
= − 1.399, p = 0.162). The luminance of offer 2 also did not 
drive responses in either subject B (β = − 0.001 ± 0.002, 
t = 0.490, p = 0.625) or in subject J (β = 0.002 ± 0.001, 
t = 1.252, p = 0.211). A Pearson correlation of offer lumi-
nance and pupil response across all trials confirms this result 
for both offer 1 (subject B: r = − 0.007, p = 0.551; subject 
J: r = 0.007, p = 0.406) and offer 2 (subject B: r = 0.008, 
p = 0.523; subject J: r = − 0.015, p = 0.105).

The lack of correlation between luminance and pupil size 
likely reflects the relatively weak luminary effects of the 
small area covered by the offers (300 × 80 px on a 1024 × 768 
computer monitor). It is also likely attributable in part to the 
stimulus colors we chose, which did not have a systematic 
relationship between indicated value and luminance bright-
ness (Figure S1C).

Effect of offer 1 value on the pupil response to offer 
2

We next asked how offer 1 value related to the pupil 
response to offer 2 (Fig. 3). Pupil size during the offer 2 
epoch increased significantly with larger values of offer 1 
(subject B: offer 1: β = 0.228 ± 0.033, t = 7.013, p < 0.0001; 
subject J: offer 1: β = 0.035 ± 0.017, t = 2.069, p = 0.039). 
Thus, values stored in working memory have the opposite 
effect of values on the screen.

Specifically: for subject B, the peak offer 1-dependent dif-
ference in offer 2 response occurred at 594.9 ± 0.9 ms after 
offer 2 onset. At this time, the average sizes of the pupil 
following large and small first offers were 0.164 ± 0.072 
and − 0.631 ± 0.096, respectively (these values are different, 
two-sided Student’s t test; t = 6.247, p < 0.0001). For sub-
ject J, the peak difference occurred at 641.1 ± 0.5 ms after 
offer 2 onset. At this time, the average sizes of the pupil 
following large and small first offers were 0.511 ± 0.048 and 
0.286 ± 0.046, respectively (these values are different, two-
sided Student’s t test; t = 3.316, p = 0.0009).

Since pupil size during the normalization window for 
this analysis (the 500 ms leading up to offer 2) includes the 
differential response to offer 1, it was important to account 
for the potential effect of this variation in the response to 
offer 2. To do so, we performed a regression of pupil size 
at the time of peak difference (measured above) against 
offer 1 value, offer 2 value, and the mean pupil size during 
the normalization window. We found that, while increased 
pupil size during the pre-offer 2 normalization window nega-
tively correlated with pupil size observed following offer 2 
(subject B: β = − 0.107 ± 0.010 t = − 10.356, p < 0.0001; 
subject J: β = − 0.071 ± 0.005, t = − 14.987, p < 0.0001), 
the increase in pupil size with offer 1 value and decrease 
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with offer 2 value both remained significant (subject B: 
offer 1: β = 0.200 ± 0.023, t = 8.900, p < 0.0001; offer 2: 
β = − 0.053 ± 0.022, t = − 2.392, p = 0.017; subject J: 
offer 1: β = 0.037 ± 0.014, t = 2.552, p = 0.011; offer 2: β 
= − 0.1529 ± 0.014, t = − 10.684, p < 0.0001).

Pupil size predicts choice and reflects the value 
of the chosen offer more strongly than the value 
of the unchosen offer

Following the presentation of the second offer, pupil size 
steadily increased leading up to the choice epoch (Fig. 4). 

During the pre-choice delay, when no offer stimuli were on 
the screen (0 to 200 ms following offer 2), pupil size was 
correlated with the value of the chosen offer in the two sub-
jects together (r = − 0.019, p = 0.010), and was significant 
in one subject and close, but not statistically significant, in 
the other (subject B: r = − 0.024, p = 0.051; subject J: r 
= − 0.023, p = 0.009). It was not correlated, however, with 
the unchosen offer in either subject (subject B: r = − 0.008, 
p = 0.540; subject J: r = − 0.010, p = 0.260), or in the two 
subjects averaged together (r = − 0.008, p = 0.294). These 
findings are consistent with the idea that following presumed 
covert choice subjects attend the value of the chosen offer 

Fig. 3  Pupil response to relative value of offer 2. a Pupil response to 
offer 1 value during and after the offer 2 epoch. ‘Large’ and ‘small’ 
refer to offers above and below the median offer value, respectively. 
Pupil size is normalized to the 500  ms period preceding offer 2 
onset. The top panel shows the z score (± SEM) pupil size at 10 ms 
increments. The bottom panel shows the difference between mean 
pupil size on large and small offer trials; shaded gray area shows the 
α = 0.05 significance threshold (two-sided permutation test). Dotted 
line represents the mean time of the beginning of the choice epoch 

for each subject, which depended on fixation time following the post-
offer-2 delay. b, c Binned offer 1 (2) value response. Mean (± SEM) 
pupil size during the 150  ms following the first detected offer-2-re-
lated difference in pupil size; note that the initial 250 ms latency cut-
off for stimulus-related pupil size effects (see “Methods”). β and p 
values for the regression of pupil size with offer 1 (2) value, from a 
multiple regression against pupil size of offer 1 and 2 value, token 
number, and chosen offer side, at the time of maximum difference 
between large and small offer 1 responses
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more than the value of the unchosen offer (Hayden and 
Moreno-Bote 2017).

Following choice, pupil size increases 
with anticipated value

In the delay following choice, while subjects awaited feed-
back on their gamble, pupil size was higher when the jackpot 
reward was within reach. Specifically, we compared pupil 
size on trials when subjects possessed 3 or more tokens to 
trials when they possessed fewer (two-sided Student’s t test; 
Subject B: t = − 4.602, p < 0.0001; subject J: t = − 13.834, 
p < 0.0001). This effect is not dependent on binning: regress-
ing pupil size by number of tokens demonstrated a signifi-
cant positive relationship (Fig. 5b; subject B: r = 0.954, 
p = 0.003; subject J: r = 0.866, p = 0.026).

In our task, there was a delay following feedback and 
before the reward itself. A transient pupillary dilation 

coincided with the delivery of feedback on jackpot tri-
als, demonstrating that subjects anticipated the large pri-
mary reward itself (Fig. 5c). Pupil size was larger dur-
ing the period immediately following feedback on 
jackpot trials (Fig. 5d; subject B: 0.712 ± 0.020; subject 
J: 0.289 ± 0.006) than on non-jackpot trials (subject B: 
0.513 ± 0.033; subject J: 0.085 ± 0.021). These effects 
were significant in both subjects (2-sided Student’s t 
test; subject B: t = 2.599, p = 0.009; subject J: t = 4.060, 
p < 0.0001). Note that the appearance of feedback itself on 
jackpot trials (a blue bar across the bottom of the screen; 
see Fig. 1a) resulted in pupillary constriction, but the 
anticipatory dilation occurred during the ~ 200 ms imme-
diately following feedback, before any seen information 
could be expected to be expressed in pupil size.

Fig. 4  Pupil size by chosen offer and choice heuristic. a Pupil size by 
chosen offer during and after the offer 2 epoch. Pupil size differed on 
the basis of which offer was ultimately chosen. Pupil size is normal-
ized to the 500  ms period preceding offer 1 onset. Dotted line rep-
resents the mean time of the beginning of the choice epoch for each 
subject, which depended on fixation time following the post-offer-2 
delay. b Pupil size predicts choice. Analysis window was the 200 ms 

following the offer 2 epoch. Choice probability is the area under the 
ROC curve, indicating the probability that an ideal observer could 
predict the chosen offer from only the mean pupil size during the 
analysis window. c Choice heuristic. ‘Hard’ and ‘easy’ trials refer to 
trials in which the two offers were below or above the median differ-
ence in offer values, respectively. Both subjects chose offer 1 signifi-
cantly more often on ‘easy’ trials than on ‘hard’ trials (p < 0.05)
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A heuristic bias in choice

We observed a novel heuristic choice bias in this dataset. 
The effect builds on a recency bias previously observed in 
macaques and extended here (Blanchard et al. 2014a, b). 
Specifically, subjects chose offer 2 slightly more often than 
offer 1 (subject B: 52.8 ± 1.19%, subject J: 58.3 ± 0.86%, 
binomial proportion 95% confidence intervals, binomial 
test, p < 0.0001 for both subjects). The novel finding is that 
subjects were more accurate (i.e., more likely to choose the 
EV-maximizing option) when they chose offer 1 (subject B: 
80.96 ± 1.37% vs. 74.83 ± 1.43%; subject J: 77.93 ± 1.13% 
vs. 70.22 ± 1.05%, binomial proportion 95% confidence 
intervals, Fisher’s exact test, p < 0.0001 for both subjects). 
This bias can be explained by a sequential, accept–reject 
choice process: if subjects attend to and decide on one offer 
at a time, then at the time of choice offer 2 will tend to 
be the attended offer and therefore accepted more often by 
default. Supporting this interpretation, the bias towards offer 
2 was more pronounced when decisions were difficult—that 
is, when options were more similar in SV (Fig. 4c, Fisher’s 
exact test, p < 0.0001 for both subjects).

Further supporting this idea, the strength of the bias 
decreased with increasing number of tokens. In our task, all 
trials were followed by the same amount of primary reward, 
except for trials on which monkeys successfully accumu-
lated six tokens and subsequently received a large, ‘jackpot’ 
primary reward. For this reason, token number, which was 
displayed throughout the trial (including during the intertrial 
interval), provided a running measure of proximity to this 
large reward. When subjects had 5 tokens, 1 token away 
from the large primary reward, they chose offer 1 49.63 ± 
3.45% of the time; when subjects had fewer than 5 tokens, 
they chose offer 1 only 43.10 ± 1.27% of the time (Fish-
er’s exact test, subject B: p = 0.038; subject J: p < 0.0001). 
Response times also decreased when subjects possessed 5 
tokens (384.2 ± 2.6 ms) vs. when they possessed fewer than 
5 tokens (420.9 ± 1.4 ms; t = − 8.901, p < 0.0001 for both 
subjects). These data suggest that offer 2, as the putative 
attended offer during the choice epoch, is processed more 
easily than offer 1 except under highly motivated conditions.

Discussion

We examined the relationship between offered and antici-
pated values on pupil size in rhesus macaques performing a 
sequential choice task with asynchronous offer presentation. 
Larger offered values for both the first and second offers led 
to stronger pupillary constrictions. The value of the second 
offer was encoded relative to the value of the first and not 
absolutely. Pupil size thus negatively tracked the relative 
value of the presumed attended offer. Immediately before 

choice, when neither offer was visible, pupil size correlated 
with the value of the chosen, but not unchosen offer. Follow-
ing choice, pupil size was larger on trials with greater token 
count, which is correlated with higher base trial value. Fur-
thermore, pupil dilation coincided with feedback on jackpot 
trials, when a large reward was expected. Our results confirm 
previous findings on anticipated value and pupil size and 
extend them to new contexts. We also show a relationship 
between offered value and pupil size, one that is the opposite 
of the previously published relationship between the antici-
pated value and pupil size.

Our results indicate a clear dissociation between the 
effects that offered and anticipated rewards have on pupil 
size and, thus, suggest that they are not processed in the 
same way. These results, therefore, argue against the strong-
est versions of the simulation hypothesis—the idea that the 
way we represent offered rewards is to reactivate states asso-
ciated with anticipating (and in some cases, receiving) the 
reward (Kahnt et al. 2010; Schoenbaum et al. 2003; Stal-
naker et al. 2006; Wang and Hayden 2017; Xie et al. 2016). 
Instead, they are consistent with the idea that the representa-
tions of offered rewards have elements that are qualitatively 
different from those of anticipated rewards, leading to the 
difference in the way they are reflected in pupil size. This 
distinction is also reflected in the way offered and antici-
pated rewards are encoded in neural responses (Farovik 
et al. 2015; McNamee et al. 2015; Tsujimoto et al. 2012; 
Wang and Hayden 2017). Note that our results do not argue 
against a weaker version of the simulation hypothesis, in 
which offers partially reactivate response patterns associated 
with receipt but also activate orthogonal response patterns. 
Other results from our laboratory provide neuronal evidence 
in favor of that hypothesis (Wang and Hayden 2017).

We have previously argued that it can be helpful to take 
a foraging perspective to understand economic choice 
(Cisek 2012; Hayden 2018; Pearson et al. 2014). From 
this perspective, decision makers consider one option at 
a time, evaluate the value of accepting it relative to the 
value of rejecting it, and then accept it if the value is above 
some threshold (Freidin et al. 2009; Kacelnik et al. 2011). 
This finding is echoed in neural responses (Krajbich et al. 
2010; Rich and Wallis 2016) and, here, in pupil responses. 
Across the two offers, the size of the pupil is correlated 
with the size of the attended value. Indeed, the decrease 
in pupil size with increasing offered value may indicate 
attention to the presented offer. The converse would then 
be true for the case of offer 2 on trials in which offer 1 
was highly valuable. That is, if the subject “accepts” a 
highly valuable first offer, he may then pay less attention 
to the second and be less focused in the pre-choice delay, 
leading to the larger pupil size that we observed during 
those epochs. This idea has an echo in the classic idea 
of memory-guided decision making, in which attention 
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to a memorandum alters the responsiveness of high-level 
association neurons to subsequent probes, allowing for 
fast feed-forward decision-making (Miller and Desimone 
1994; Miller et al. 1991; Mirabella et al. 2007; Hayden 
and Gallant 2013; Lui and Pasternak 2011; Machens et al. 
2005).

The observation of a heuristic bias in our subjects toward 
choosing offer 2 is consistent with this hypothesis. The sec-
ond offer, being presented right before the choice epoch, 
would naturally tend to be the attended offer at the time of 
choice. The subject would thus be predisposed to accept it. 
This may have resulted in the generally quicker choices and 
preference on difficult trials that we observed toward offer 
2 in both subjects. On the other hand, when offer 2 does not 
meet the threshold for acceptance, a subject must engage in 
the more cognitively demanding process of shifting atten-
tion to and evaluating offer 1. For marginal decisions, this 
may have only been ‘worth it’ to the subjects when they had 
5 tokens and were thus close to receiving a large primary 
reward—the only condition under which the bias toward 
offer 2 disappeared. Along these same lines, but assum-
ing less of a link between the value-based decision making 
system and pupil-linked arousal, is the possibility that the 
higher pupil size in response to low-value offers indicates 
that the subject is resisting the natural inclination to accept 
what is currently available.

An advantage of viewing decision making through the 
lens of foraging is that it provides a new perspective on the 
fundamental meaning of value, one of the important philo-
sophical problems of neuroeconomics (Hunt and Hayden 
2017; Levy and Glimcher 2012; O’Doherty 2011; Schultz 
2008; Wallis and Rich 2011). Specifically, it suggests that 
value is not a single entity, but a convenient name for a vari-
ety of constituent cognitive processes. These processes are 
not necessarily highly correlated; indeed, they can, as in the 
case of offered and anticipated values, have opposing effects. 
They are also likely to be broadly distributed throughout the 
brain, rather than bound to a particular population or area. It 
is, therefore, no surprise that their distinct traces show up in 
such a global indicator of brain state as pupil size.
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