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Neural timescales reflect behavioral
demands in freely moving rhesus macaques

Ana M. G. Manea 1,2 , David J.-N. Maisson1, Benjamin Voloh1,
Anna Zilverstand 3, Benjamin Hayden 4 & Jan Zimmermann 1,2

Previouswork demonstrated a highly reproducible cortical hierarchy of neural
timescales at rest, with sensory areas displaying fast, and higher-order asso-
ciation areas displaying slower timescales. The question arises how such stable
hierarchies give rise to adaptive behavior that requires flexible adjustment of
temporal coding and integration demands. Potentially, this lack of variability
in the hierarchical organization of neural timescales could reflect the structure
of the laboratory contexts.We posit that unconstrained paradigms are ideal to
test whether the dynamics of neural timescales reflect behavioral demands.
Here wemeasured timescales of local field potential activity whilemale rhesus
macaques foraged in an open space.We found a hierarchy of neural timescales
that differs from previous work. Importantly, although the magnitude of
neural timescales expanded with task engagement, the brain areas’ relative
position in the hierarchy was stable. Next, we demonstrated that the change in
neural timescales is dynamic and contains functionally-relevant information,
differentiating between similar events in terms of motor demands and asso-
ciated reward. Finally, we demonstrated that brain areas are differentially
affected by these behavioral demands. These results demonstrate that while
the space of neural timescales is anatomically constrained, the observed
hierarchical organization and magnitude is dependent on behavioral
demands.

Behavioral coordination and adaptation across an ever-changing
environment are a hallmark of cognition in biological systems. To
function in our daily lives, we simultaneously consider auditory, visual,
and sensory input while achieving motor coordination, each of which
spans a continuum of spatial and temporal scales. Consider one of the
most studied systems in neuroscience, the visual cortex. It is well
known that neurons along the visual pathway have increasingly larger
receptivefields1—higher-level visual areas respond to information from
large portions of space by integrating input from neurons in the early
visual cortex, which possess smaller receptive fields. Events not only
unfold over multiple spatial but also over a multitude of temporal
scales2,3, Indeed, this hierarchical increase in representational

complexity is closely followed by a hierarchy of longer temporal pro-
cessing windows4. Similarly, neural processing in the prefrontal cortex
(PFC) is organized across different scales of complexity, with pro-
gressively more abstract representations and higher-order control on
posterior-anterior and ventral-dorsal axes5–7, Moreover, electro-
physiological and functional magnetic resonance imaging (fMRI)
results in human and nonhuman primates at rest have demonstrated
that the frontal lobe is organizedalong ahierarchical gradient of neural
timescales that mirrors its functional architecture8–11. In particular, it is
thought that areas that display relativelymore information integration
display slower neural timescales12–15. These parallel results suggest that
neural timescales in the PFC might be functionally relevant,
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nevertheless, direct evidence to support this conclusion is limited.
Fromoneperspective, it couldbeargued that neural timescalesmerely
reflect a relatively static property inherited from their place in the
anatomical hierarchy that allows neurons within that area to integrate
over a stable temporal scale. In this case, although neural timescales
would facilitate function, the timescales themselves would not change
in a functional manner. Alternatively, it could be argued that anatomy
instead might impose a range of timescales that bounds the dynamics
over which brain areas can operate. For example, it is conceivable that
there are stable hierarchies of timescales that can expand and contract
depending on functional demands.

To answer this question, we need to investigate the dynamics of
neural timescales in the context of behavior8,16–18. There is currently
scarce evidence about the behavioral dependence of neural time-
scales, their hierarchical organization, and general function in the
context of behavior, and especially how these relate to one another.
Some preliminary evidence suggests that neural timescales expand
with task engagement and attention, and hence are potentially func-
tionally relevant16,18. In contrast, a plethora of previous findings have
demonstrated remarkably reproducible and consistent neural time-
scales across cortical areas at rest (see Fig. 1A), with one study even
concluding that the hierarchy of neural timescales appears invariant to
task context and that neural timescales are not affected by behavioral
demands19. In contrast, a large-scale dynamical model of the macaque
neocortex exhibits not one, but multiple temporal hierarchies, as
indicated by unique responses to visual and somatosensory
stimulation20. The existence of multiple concurrent neural timescales
gradients that are dynamically expressed20,21, might accommodate
adaptive and flexible behavioral changes at different temporal scales.
Finally, although characteristic timescales have been assigned to brain
areas as a whole, single neurons display heterogeneous neural time-
scales at rest10,22–26. The question arises whether this heterogeneity is
purely anatomical or whether it is the result of both anatomy and
contextual demands27.

We propose that the failure to find multiple hierarchies of neural
timescales in previous experiments, i.e., the areas’ relative position,
may be a by-product of the rigid structure of traditional experiments
that enforce stationary temporal scales. Investigating neural time-
scales in a constrained lab environment (i.e., chaired electro-
physiology) with trialized tasks, imposes a bounded temporal
structure and limits the complexity of the input entering and the
output leaving the brain. If these constraints were removed, neural and
behavioral dynamics would become temporally unconstrained—
except for the boundaries imposed by biophysics. Therefore, what we
know about neural timescales might not be entirely intrinsic to the
biological system, but rather a reflection of the conditions imposed by
the structure of the experimental paradigm28,29. While this approach
has brought invaluable contributions to our understanding of the
brain and behavior, it is nonetheless limitedwhen it comes to studying
the functional relevance of neural timescales. To understand and
establish a neurobehavioral timescale correspondence, it is thus
imperative to approach the question from a more unconstrained
perspective.

Here, we investigated neural timescales in an unconstrained
experimental paradigmwith relativelyminimal temporal structure.We
hypothesized that the observed hierarchy of neural timescales is
dependent on the environment, as reflected by the temporal con-
straints, the complexity and nature of the input, and the required
motor output. Moreover, we predicted behaviorally-dependent shifts
in the magnitude of neural timescales. To test these hypotheses, we
investigated how the brain handles multi-scale signals to drive pur-
poseful behavior while rhesus macaques were free to forage in a large
open field environment30–32. Our experimental paradigm imposed
minimal temporal constraints and put emphasis on self-paced beha-
vior rather than focusing on a particular cognitive or perceptual

process in isolation.We simultaneously recorded brain activity in eight
brain areas: orbitofrontal cortex (OFC), ventrolateral prefrontal cortex
(VLPFC), dorsolateral prefrontal cortex (DLPFC), frontal eye fields
(FEF), anterior cingulate cortex (ACC), premotor (PM) cortex, supple-
mentary motor area (SMA), and dorsal striatum. We investigated
neural timescales from a population perspective as reflected in the
local field potential (LFP) activity16,33. We found a hierarchy of neural
timescales different from previous studies, potentially shaped by this
foraging environment. Next, we demonstrated that neural timescales
expand with task engagement, although the areas’ relative position in
the hierarchy remains the same across the recording session. Finally,
we showed that the change in neural timescales is dynamic and reflects
the abstract meaning of foraging events. Together, this demonstrates
that while anatomy constrains the space of possible neural timescales,
the observed hierarchical organization and magnitude of neural
timescales is heavily dependent on behavioral demands.

Results
Two macaques performed a foraging task in a large open space that
allowed for unconstrained movement (Fig. 1B and Methods). The
environment contained four reward stations positioned at fixed loca-
tions. The reward stations dispensed 1.5mLof liquid reward for eachof
the first four lever presses and became unavailable for 3min after the
fifth lever press (i.e., depleted reward station; see Methods for task
details). We recorded behavioral and neural data across 197 sessions
(W: 101; Y: 96, see Supplementary Fig. 1 for the number of channels/
area). The average daily recording session was 97.8minutes
(SD ± 5.2min).

We tracked the position of thirteen joints (key points) in our
subjects with OpenMonkeyStudio30. We recorded neural activity using
a data logger (SpikeGadgets, San Francisco, USA) attached to a multi-
electrode array (Gray Matter Research, Bozeman, USA) with 128 inde-
pendently movable electrodes. We recorded both isolated neurons
and local field potentials (LFPs) from eight areas: orbitofrontal (OFC),
ventrolateral prefrontal (PFC), anterior cingulate (ACC), dorsolateral
prefrontal (DLPFC) cortices, frontal eye fields (FEF), supplementary
motor area (SMA), premotor cortex (PM), and the dorsal striatum
(Fig. 1C). To quantify neural timescales, we focused on the local field
potentials (see Fig. 1D and Methods) for two reasons: (1) spatial cov-
erage, (2) their ability to be leveraged across long temporal windows
allowing us to investigate the temporal dynamics of neural timescales
throughout the recording session.

Neural timescales are variable
We first examined session-wide neural timescales for individual
recording sessions. For each recording site, we estimated neural
timescales using a 10 s moving window with 5 s overlaps (see Fig. 2A
and Methods). To identify the neural timescales characteristic of each
brain area, we computed the median neural timescales collapsing
across sessions and subjects. We demonstrated that neural timescales
estimated from LFPs are ~10 times faster than those estimated from
neuronal spiking data, i.e., ~10–50ms, which is consistent with pre-
vious findings16. We further found that the magnitude of neural time-
scales decreased systematically across the duration of the recording
session in all areas (p <0.05, linear regression model, Fig. 2A).

We observed that task engagement (i.e., lever presses) also
decreased across the recording session in both animals (Fig. 2B).
Hence, we askedwhether neural timescales and task engagement were
related across the recording session. We hypothesized that there is a
monotonic relationship between the two, with more task engagement
being accompanied by slower dynamics. Specifically, we divided each
session into ten equally sized (~10-min-long) segments. As a proxy for
task engagement, we calculated the total number of lever presses in
each segment. For every recording session, we computed the corre-
lation between the magnitude of the neural timescales and our task
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engagement index (see Supplementary Fig. 2H for the sample size of
this analysis, as reflected by the number of recording sessions per
area). For all areas, we observed a strong positive relationship between
task engagement and the magnitude of the neural timescales, i.e., the
median Pearson correlation coefficient across sessions ranged
between 0.23 in the OFC and 0.65 in the VLPFC (Fig. 2C). To assess
whether the median of the obtained distribution of Pearson

correlation coefficients was significantly larger than 0, we performed a
one-sample Wilcoxon signed-rank for every area. In all areas, the
median Pearson correlation coefficient was significantly larger than 0
(p < 0.05, with Bonferroni correction for eight comparisons).

Next, we asked whether neural timescales were related to move-
ment, to account for the possibility that changes in neural timescales
could be driven by increased motor activity, during intervals of high

S1 S2 MT LIP FEF
PMd

OFC
VLPFC

LPFC
DLPFC

VMPFC
sgACC

pgACC PFp
ACC

50

100

150

200

250

300

350

400

450

STN

GPe

Striatum

Murray (2014)

Wasmuht (2018)
Cirillo (2018)

Cavanagh (2018)
Cavanagh (2016)

Fascianelli (2019)
Maisson (2021)

Nougaret (2021)

2.45 m 2.75 m

2.
45

 m

Available

Unavailable

Foraging 

Reward
station

electrode 
array

chamber

data 
logger

lo
g(

P
ow

er
)

10

20

30

40

fk

Power Spectral Density

OFC

VLPFC

DLPFC

ACC

FEF

PM

SMA

Striatum

Aperiodic component fit

Neural timescales

10010

Frequency (Hz)
Area

A

B C

D E

SMA PM

FEF

ACC

DLPFC

VLPFC

OFC Striatum

Article https://doi.org/10.1038/s41467-024-46488-1

Nature Communications |         (2024) 15:2151 3



displacement or motion in general. For every recording session, we
computed the correlation between speed of displacement and neural
timescales (see Supplementary Fig. 2L for the sample size of this ana-
lysis, as reflected by the number of recording sessions per area). We
found that neural timescales were only weakly correlated with move-
ment speed, i.e., the median Pearson correlation coefficient across
sessions ranged from 0.05 in the PM cortex to 0.14 in the VLPFC
(Fig. 2D). To assess whether themedian of the obtained distribution of
Pearson correlation coefficients was significantly larger than 0, we
performed a one-sample Wilcoxon signed-rank for every area. In all
areas, the median Pearson correlation coefficient was significantly
larger than 0 (p <0.05, with Bonferroni correction for eight compar-
isons). In combination, these results suggest that the gradual decrease
in neural timescales throughout the recording session was primarily
related to task engagement, an aggregate of behavioral state para-
meters in our task, and less so tomovement parameters such as speed,
a hypothesis we will further test next.

To test the unique relationship between speed, task engagement
and neural timescales for the brain areas we recorded from, as well as
to control for temporal autocorrelations, we next performed the fol-
lowing analysis. For each area, we randomly sampled without repla-
cement n (i.e., equivalent to the number of sessions) observations out
of the total number of data points (note: the total number of data
points per area can be calculated as the number of sessions × 10, i.e.,
number of time segments; see Supplementary Fig. 2J for the sample
size of this analysis, as reflected by the number of recording sessions
per area). For each subsample, we fit a linear regression model (see
Supplementary Fig. 3 for the resulting distributions of standardized β
coefficients).We demonstrated that the effect of task engagement was
gradually stronger in more dorsal areas—i.e., the regression coeffi-
cients were progressively larger (p <0.05, pairwise two-sided inde-
pendent sample t-test with Bonferroni correction for 28 comparisons;
Fig. 2E) displaying the following ventro-dorsal ordering: OFC <Stria-
tum <VLPFC -DLPFC-SMA< FEF <ACC< PM. Conversely, the effect of
speed was gradually stronger in ventral areas—i.e., the regression
coefficients were progressively larger (p <0.05, pairwise two-sided
independent sample t-test with Bonferroni correction for 28 compar-
isons; Fig. 2E) displaying the following ventro-dorsal ordering: OFC >
VLPFC > Striatum - ACC >DLPFC> SMA - FEF > PM. Moreover, the
effect of task engagement was larger than that of speed inmore dorsal
areas: SMA, PM, FEF, ACC, and DLPFC (p < 0.05, two-sided paired t-test
with Bonferroni correction for eight comparisons). In contrast, there
was no significant difference between the two predictors in VLPFC and
the striatum, and the relationship was reversed in the OFC (p<0.05,
two-sided paired t-test with Bonferroni correction for eight
comparisons).

Next, we demonstrated a monotonic relationship between brain
areas and session-wide neural timescales (b = 2.29, 95% CI = [2.27 2.31];
monotonic Bayesian regressionmodel) with the following hierarchical
organization: OFC <Striatum <VLPFC <ACC<DLPFC< FEF < PM<
SMA. To systematically assess the stability of this hierarchy across
time, we additionally ranked the areas at each time point and com-
pared their ordering to the session-wide hierarchy of neural timescales
by using Spearman rank correlation (average Spearman rank

correlation coefficient 0.99, SD 0.01). This analysis further supported
the Bayesian regression results, demonstrating a monotonic relation-
ship between areas, with the relative position in the hierarchy being
stable across time. In sum, we found a ventro-dorsal timescale hier-
archy that overlapped but also deviated from previous findings in
important ways. Briefly, we found that motor-related areas displayed
the slowest timescales, followed by DLPFC and ACC, which displayed
intermediate timescales, andfinally, ventral areasdisplaying the fastest
timescales. While the ventral areas displaying faster timescales than
dorsal areas replicates previous work on monkey neuronal spiking
timescales, motor-related areas are relatively higher in our hierarchy.

The hierarchy of neural timescales at rest is dependent on
behavioral demands
To test if baseline neural timescales, i.e., at rest, are also shaped by this
context, we estimated neural timescales during task-free periods of
time10. We did not impose any task demands on our animals, and
hence, there was no predefined resting-baseline before a trial (i.e., the
intertrial interval was self-imposed). As a result, there was a wide
repertoire of behaviors in the moments before a lever press (e.g., sit-
ting, walking, etc.). To capturemoments when the animalwas at “rest”,
we operationalized task-free trials as periods of 5 s (or longer) during
which displacement of the 3D center-of-mass was less than 40 cm,
excluding task engagement (see Fig. 3A and Methods). The average
task-free period length was 6.5 s (SD =0.4 s).

Using this approach, we showed that the hierarchy of task-free
neural timescales was consistent with our session-wide results (see
Supplementary Fig. 2K for the sample size of this analysis, as reflected
by the number of recording sessions per area).We found the following
hierarchy when the animal was at “rest”: OFC <Striatum - VLPFC <
DLPFC<ACC< FEF < PM-SMA (see Fig. 3B). The magnitude of the
neural timescales differed significantly between areas, except for the
following pairs: PM-SMA, ACC-FEF, and VLPFC-striatum (p <0.05,
pairwise two-sided Mann–Whitney U-test computed across sessions
with Bonferroni correction for 28 comparisons). In sum, we show that
the baseline itself is not intrinsic but rather a reflection of the con-
textual cognitive and perceptual demands imposed on the brain.

Neural timescales changes are dependent on the behavioral
context
Given the variability in neural timescales described above, we hypo-
thesized that changes in neural timescales could depend on the
behavioral context. In our experiment, the primary behavioral
demands on the monkeys resulted from the pattern of engagement
with the reward stations, i.e., thedecisions to engage or disengagewith
a particular reward station location. We therefore divided events with
lever presses into three categories: (1) first press on a feeder, (2)
intermediate presses, and (3) final lever presses.We hypothesized that
these three types of lever presses could be associated with different
neural timescales signatures because, even though they have identical
actions, they have inherently different cognitive meanings and beha-
vioral contextual demands. The first lever press reflects the decision to
forage at a given reward station, while the final lever press ends that
goal sequence and requires an animal to decide on what to do next.

Fig. 1 | Overview of neural timescales estimation and experimental design.
AHierarchical organization of neural timescales at rest (τ) estimated fromneuronal
spiking data. Neural timescales were estimated in 14 cortical and 3 subcortical
areas). Traditionally, neural timescales were estimated in the pre-trial period of
various tasks (i.e., chaired electrophysiology) by fitting an exponential decay
function to the autocorrelation function (i.e., time-lagged correlation). Each circle
represents the population-level τ for each cortical area and the stars represent
population-level τ for each subcortical area reported in each study. B Depiction of
the cage and foraging task. The subjects were allowed to freely explore and interact
with reward stations in an open space - i.e., 2.45 × 2.45 × 2.75m cage with barrels.

C Our recording system and recording sites in the striatum, OFC, VLPFC, DLPFC,
ACC, FEF, PM, and SMA. D Local field potential (LFP) power spectral densities
(PSDs) fromexample channels in SubjectW. ETop: Aperiodic component fit for the
example PSDs. We applied spectral parameterization to infer timescales from the
PSDs (Donoghue et al., 2020; Gao et al., 2020). The periodic oscillatory peaks were
discarded and the ‘’knee frequency” (fk vertical dashed lines) was extracted from
the fit of the aperiodic component. Bottom: Neural timescales (τ) were inferred
from fk via the embedded equation. OFC orbitofrontal cortex, VLPFC ventrolateral
prefrontal cortex, DLPFC dorsolateral prefrontal cortex, ACC anterior cingulate
cortex, FEF frontal eye fields, PMpremotor cortex, SMA supplementarymotor area.
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Intermediate lever presses are more heterogeneous in terms of their
position in the goal sequence and were therefore not considered for
this analysis.

Because we were particularly interested in changes before and
after the lever presses, we time-locked the estimation of the neural
timescales to the event to examine how the event itself affects these
dynamics (Fig. 3A). We excluded the window centered on the event
since it would include the dynamics of both before and after the
decision. We found an expansion in the magnitude of timescales
during task engagement without an associated change in the relative

position of an area in the overall hierarchy—i.e., all areas showed sig-
nificant τ increase compared to baseline (defined as the median task-
free timescales at rest) at any time point before and after the event
(p < 0.05, one-sided Wilcoxon signed-rank test with Bonferroni cor-
rection for 160 comparisons).

Interestingly, a clear and unique temporal dynamic profile sepa-
rated the two categories of lever presses. For the first lever presses, we
found that neural timescales gradually increased in the seconds lead-
ing up to the interactionwith the reward station and sharply decreased
in the seconds after (Fig. 3C). To assess the significance of this linear
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increase for individual areas, we conducted a linear regression model
for each recording session (see Supplementary Fig. 2L for the number
of recording sessions per area for the first and final lever presses), with
time as the predictor and neural timescales as the dependent variable
(see Supplementary Fig. 4A, B for the resulting distribution of stan-
dardized regression coefficients for the first and final lever presses).
Before the first lever press, for all areas across recording sessions, the
resulting regression coefficients were significantly larger than 0
(p < 0.05, one-sided Wilcoxon signed-rank test with Bonferroni cor-
rection for 32 comparisons). After the event, in some areas such as
SMA, FEF, ACC, VLPFC, and striatum neural timescales started
increasing again, while for the others, there was no significant trend
across time (p < 0.05, one-sided Wilcoxon signed-rank test with Bon-
ferroni correction for 32 comparisons). For the final lever presses,
neural timescales gradually increased in the seconds leading up to and
continued to increase after the interaction with the reward station
(Fig. 3D). Similar to the first lever presses, we found that for all areas
across events, the resulting regression coefficients were significantly
larger than 0 before the event (p <0.05, one-sided Wilcoxon signed-
rank test with Bonferroni correction for 32 comparisons). In contrast,
in all areas we found that regression coefficients were significantly
smaller than 0 after the event (p < 0.05, one-sided Wilcoxon signed-
rank test with Bonferroni correction for 32 comparisons).

So far, we have therefore demonstrated a nested correspondence
between neural timescales and the temporal scales over which beha-
vior unfolds. At long (session-wide) temporal scales, neural timescales
corresponded with overall task engagement, as shown above, while at
short temporal scales, neural timescales exhibited variability corre-
sponding to ongoing behavioral demands from our task.

The temporal adaptation of neural timescales varies by area
In the previous section, we demonstrated a correspondence between
neural timescales and behavioral contextual demands. Although we
showed that the hierarchy expands in the seconds leading up to the
lever presses, we did not assess whether this magnitude change
differed by area. Here, we hypothesized that this magnitude expan-
sion of neural timescales might indeed be differentially modulated
per area. To that end, we examined the pairwise differences between
areas (two-sided Mann–Whitney U-test with Bonferroni correction
for 280 comparisons per event), with respect to their change from
resting-baseline for each time point before and after the first and
final lever presses (Fig. 4; see Supplementary Fig. 2N, O for the
sample size of these analyses, as reflected by the number of
recording sessions per area). Note that we chose this statistical
approach for the sake of robustness and to avoid overfitting. We
normalized the change in neural timescales per area by subtracting
the respective area-specific resting-baseline (Δτ) for each time point.
We found that this adaptation differed in magnitude by area, such
that while the changewas undifferentiated several time points before

the event, a differentiated hierarchy emerged just before the events
of interest.

Notably, we found that a ventral to dorsal grouping of the areas
emerged before each event: (1) the striatum and OFC displayed the
smallest change in timescale magnitude; (2) the VLPFC, DLPFC, and
ACC displayed an intermediate level of magnitude change that was
significantly higher than in the striatum and OFC; (3) and the FEF, PM
and SMA displayed the highest level of magnitude change—hence,
these areas were placed at the top of the hierarchy of change (see table
inserts in Fig. 4 for statistics). We found this grouping both before the
first and final lever presses. However, each category of events exhib-
ited unique temporal profiles after the event. Notably, for thefirst lever
presses, the areas clustered right before the event and became
undifferentiated immediately after (see table inserts in Fig. 4 for sta-
tistics). For the final lever presses, similar clusters to those observed
for the first lever presses emerged before the event, but they persisted
after the event. Additionally, in support of the idea that there are area-
specificmodulations, see Supplementary Fig. 5 thatdepicts the change
as a percentage of baseline. In summary, while task engagement gen-
erally expanded the magnitude of neural timescales, this expansion
was differentiallymodulated by the task demands—i.e., it depended on
the type of event and the brain area. To quantify these two types of
observed changes (i.e., global, and area-specific changes), for each
time point, we calculated the effect size of each Mann–Whitney U-test
by estimating the rank-biserial correlation coefficient34. Next, for each
time point, we averaged the absolute value of the effect sizes across
the Mann–Whitney U-tests (i.e., associated with each time point’s 28
pairwise comparisons). For each time point, the average rank-biserial
correlation coefficient was used as an index of how differentiated the
areas were in their change from baseline. This index ranges from 0,
when all areas display the exact same change frombaseline, to 1, which
would indicate complete independence in their change from baseline
(see figure below). Supporting our previous conclusion, the differ-
entiation between areas increased in the moments leading up to the
lever presses. However, the two types of events (first and final lever
presses) diverge after the event. In particular, the first lever presses
display a drop, while the final lever presses display a continuation of
this differentiation between areas. We conclude that there are both
global changes, potentially driven by similarmechanisms across areas,
but also more targeted effects that differentiate the areas in their
response to foraging events.

The dynamics of neural timescales reflect key foraging events
Finally, we investigated whether timescale adaptations differed
between events with lever presses that have the same position in the
sequence but are followed by a different outcome. This way, we aimed
to further dissect behavior with respect to its cognitive meaning and
behavioral demands. To operationalize this, we looked at the fourth
lever press, which can indicate different behavioral motifs depending

Fig. 2 | Session-wide timescale dynamics and correspondence to behavioral
variables. A Right: Neural timescales (τ) estimated for individual recording ses-
sions from Power Spectral Densities (PSDs) Left: Neural timescales across time,
collapsed across recording sessions and subjects. The hierarchical ordering of the
areas is conserved across the duration of the recording session. Y-axis: median
neural timescales. X-axis: time widows. B Average number of lever presses, a
putative index of task engagement, decreases over time. Y-axis: average number of
lever presses across sessions in each 10min time segment (N = 197). Bars indicate
the standard error of the mean across recording sessions. C Task engagement was
correlated with neural timescales in all areas. Y-axis: the median correlation coef-
ficient between the number of lever presses and neural timescales across time (see
supplementary Fig. 2H for sample size). Neural timescales and task engagement
were correlated for individual recording sessions using the 10min time segments.
Circles: brain areas, median ± s.e.m across recording sessions. D Speed of move-
ment and neural timescales were weakly correlated. Neural timescales and speed

were correlated for individual recording sessions. Speed of movement was down-
sampled by using a moving average 10 s window (with 5 s overlap) to match the
neural timescales. Y-axis: the median correlation coefficient between speed and
neural timescales across time (see supplementary Fig. 2I for sample size). Circles:
median ± s.e.m across sessions. E The effect of task engagement is gradually
stronger and more separable from the effect of speed as we move from ventral to
dorsal areas. Y-axis: average regression coefficients across iterations (N = 1000).
Squares: mean β (speed of movement) ± s.e.m. Circles: mean β (task engage-
ment) ± s.e.m. Asterisk: statistical significance (two-sided paired t-test) between
predictors within an area at p <0.05, with Bonferroni correction (N = 8). OFC
orbitofrontal cortex, VLPFC ventrolateral prefrontal cortex, DLPFC dorsolateral
prefrontal cortex, ACC anterior cingulate cortex, FEF frontal eye fields, PM pre-
motor cortex, SMA supplementary motor area. Source data are provided as a
Source Data file.
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on the sequence of foraging bouts. For example, a monkey can leave a
feeder after four lever presses without performing the fifth press to
time out the system to go to the next feeder or engage in a different
behavior. From the perspective of an action, there is no difference
between timing the system out versus choosing to disengage early.
However, we hypothesized that neural timescales could exhibit dif-
ferentiable temporal profiles also to these more intricate behavioral
sequence differences. Practically, we compared neural timescales on
the fourth lever press when the monkey decided to leave versus when
they decided to stay for a fifth lever press (see Fig. 5A). Hence, we
hypothesized that the before-after dynamics around “leave” would be
similar to that of the final lever press. In contrast, we hypothesized that
there would be no significant before-after differences for the “stay”
lever presses. For each event and area, we therefore computed the

pairwise differences between before and after changes in the magni-
tude of neural timescales from resting-baseline (see Supplementary
Fig. 2N–P for the sample size of this analysis, as reflected by the
number of recording sessions per area). In other words, this analysis
compared the time point preceding and following a lever press event
in terms of their magnitude change from resting-baseline. We found
that for all areas, the before-after change from resting-baseline to the
first lever press was characterized by a significant attenuation, with
slower neural timescales before and faster neural timescales after the
event (p <0.05, one-sided Wilcoxon signed-rank test with Bonferroni
correction for 8 comparisons; Fig. 5B). The final lever press displayed
the opposite pattern, with a significant increase in the change from
resting-baseline, and ultimately slower neural timescales after the
event (p <0.05, one-sided Wilcoxon signed-rank test with Bonferroni

Fig. 3 | Neural timescales for eventswithdifferentbehavioral contexts. ANeural
timescales (τ) estimation for task-free segments and lever presses. B Task-free
neural timescales are hierarchically organized. Circles: median across sessions ±
s.e.m. (see supplementary Fig. 2K for sample size).CNeural timescales surrounding
the first lever press. Vertical dotted line: time of lever press. Circles: median across
sessions ± s.e.m. (see supplementary Fig. 2L for sample size). D Neural timescales

surrounding the final lever press. Vertical dotted line: time of lever press. Circles:
median across sessions ± s.e.m. (see supplementary Fig. 2M for sample size). OFC
orbitofrontal cortex, VLPFC ventrolateral prefrontal cortex, DLPFC dorsolateral
prefrontal cortex, ACC anterior cingulate cortex, FEF frontal eye fields, PM pre-
motor cortex, SMA supplementary motor area. Source data are provided as a
Source Data file.
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Fig. 4 | The area-specific adaptation of neural timescales. A We examined
pairwise differences between areas’ change from the area-specific resting-base-
line (Δτ) for each time point before and after the event of interest. Left: example
statistical table with p values for the two-sided Mann–Whitney U-test with the
shaded areas representing statistical significance at p <0.05 after Bonferroni
correction. Right: the color scheme of the individual areas and the color scheme
of different time points (Note: used for indicating the associated statistical table).
B The change from the area-specific resting-baseline for the time points before
and after the first lever press. The tables depict the p value associated with each
pairwise comparison for the five time points before and after the lever press. The
shading represents statistical significance at p <0.05 with Bonferroni correction

(N = 280). Circles: median across sessions. (see supplementary Fig. 2N for sample
size). C The change from area-specific resting-baseline for the time points before
and after the final lever press. The tables depict the p value associated with each
pairwise comparison for the five time points before and after the lever press. The
shading represents statistical significance at p <0.05 with Bonferroni correction
(N = 280). Circles: median across sessions. (see supplementary Fig. 2O for sample
size). OFC orbitofrontal cortex, VLPFC ventrolateral prefrontal cortex, DLPFC
dorsolateral prefrontal cortex, ACC anterior cingulate cortex, FEF frontal eye
fields, PM premotor cortex, SMA supplementary motor area. Source data are
provided as a Source Data file.
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correction for eight comparisons; Fig. 5C). Note that for visualization
purposes, six outliers for SMA and one outlier for FEF were excluded.
Although outliers do not affect tests such as theWilcoxon signed-rank
test, they bias the standard error, which is then not representative of
the spread of the area’s data. As hypothesized, “stay” lever presses did
not elicit significant changes in the before-after dynamics of any area—
i.e., the event was not accompanied by a unique neural timescales
signature (p <0.05, two-sided Wilcoxon signed-rank test with Bonfer-
roni correction for eight comparisons; Fig. 5D). In contrast, leave lever
presses were accompanied by a significant before-after expansion of
the magnitude of neural timescales which mimicked that of the final
lever presses (p <0.05, one-sided Wilcoxon signed-rank test with

Bonferroni correction for eight comparisons; Fig. 5E). Overall, we
demonstrate that the event-related changes in neural timescales are
dependent on their abstract meaning in the context of the foraging
task (see Fig. 6C for an overview).

Discussion
The brain is characterized by a hierarchical gradient of neural time-
scales in both human and nonhuman primates9,11,14, which is assumed
to arise from macroscale and microcircuit anatomical and functional
connectivity, as well as variation in cytoarchitecture10,20. The question
arises as to how these temporal properties of the brain give rise to
adaptive behavior that requiresflexible adjustment of temporal coding
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and integration demands. Here we found a ventro-dorsal hierarchy of
neural timescales that is influenced by this foraging environment.
Importantly, we showed that this hierarchy is preserved even in the
context of flexible task demands. However, the magnitude of neural
timescales dynamically expanded depending on overall task engage-
ment over long temporal scales, but also varied with the cognitive
demands of our task over shorter temporal scales. Notably, we
observed systematic changes in the magnitude of neural timescales
that span the duration of a recording session in both animals and
during every recording session, both the magnitude of neural time-
scales and task engagement gradually and reliably decreased over
time. Importantly, these results were not driven by variability inmotor-
related activity. Within these global session-wide changes, we found
variability in themagnitude of neural timescales that is associatedwith
the abstract cognitivemeaning of the different foraging events. Hence,
the neural timescales change patterns differentiated between fine-
grained behavioral states. Our results are evidence that the multitude
of external temporal scales over which behavior unfolds ismirrored by
changes in neural timescales that occur at multiple scales, with local
foraging-related changes nested within general engagement-related
changes that span longer temporal scales.

Contrary to previous work on timescales, which was usually done
in the context of memory-related or value-encoding tasks8,35, we
examined self-paced unconstrained behavior that was not focused on
an isolated cognitive component. We consistently found a stable
ventral to the dorsal hierarchy of neural timescales that extended from
OFC to motor-related areas. This was the case across all our analyses,
i.e., for neural timescales estimated during unconstrained movement,
around foraging events, and even in the absence of task engagement.
Our observed hierarchy partially overlapped but also deviated from
previous work (see Fig. 6A for an overview of previous findings). The
first major discrepancy was that the ACC, usually displaying the slow-
est timescales10,15, was not at the top of our observed hierarchy, but
rather exhibited intermediate timescales. Moreover, motor-related
areas, which previously displayed faster timescales relative to pre-
frontal areas in nonhuman primates23, exhibited the slowest temporal
dynamics in our foraging environment. This was actually in full
agreement with results from a rodent paradigm that allows for whole-
body movement36. We believe these results originate from our
experimental paradigm that allowed for unconstrainedmovement in a
large open space. This contrasted with studies using chaired para-
digms that require head fixation and restrained body movement. In
line with our initial hypothesis, our results supported the idea that
environmental demands shape the observed hierarchy of neural
timescales. This is not surprising since behaviorally relevant neural
timescales imply a certain amount of dynamic range. Deviations from
the commonly reported hierarchical organization of neural timescales
estimated from monkey neuronal spiking have been previously

described in a study using human LFP data16. In particular, the OFC
displayed slower timescales than other PFC structures, which is the
opposite of what had been previously reported (see Fig. 6A for com-
parisons). It is important to note that our results are not incompatible
with the previous literature on hierarchies of neural timescales at rest
but are rather complementary by investigating neural timescales in a
new context, that of unconstrained behavior. While these differences
in the relative position of an area within the hierarchy could be due to
using different modalities, previous work demonstrating a strong
correspondence between signal modalities16 suggests they are the
result of contextual adaptation of the observed hierarchy of neural
timescales. Our results further expanded previous work as we simul-
taneously estimated neural timescales in the dorsal striatum and pre-
frontal cortical structures, giving us the opportunity to directly place
the dorsal striatum in the context of the broader extensively studied
cortical hierarchy. The striatal neural timescales reported here place
the striatumon a comparable level to ventral prefrontal areas, which is
in agreement with previous reports of neural timescales in this sub-
cortical structure37. Overall, we confirmed our hypothesis that the
observed hierarchy of neural timescales emerges from the particular
input-output demands imposed on the brain within the bounds of
what the anatomical network permits.

Matching previous work on neural timescales at rest, i.e., esti-
mated during the baseline or pre-trial period (for an overview, see
Figs. 1A, 6A), we estimated neural timescales during immobility peri-
ods. Since the animalswere free to decidewhen or even if, to engage in
the task, the current paradigm did not have a traditional pre-trial
period comparable to previous work—i.e., the repertoire of behaviors
before engaging with a reward station is highly heterogeneous.
Immobility periods, when the animal is disengaged from the task, were
the closestmatch to capturing the animal at rest. It is important to note
that rest or baseline is generally difficult to define—the traditional
fixation period used to define neural timescales at rest is assumed to
include little task-relevant signals.However, a lackof outwardbehavior
does not imply a lack of cognitive processing. Indeed, previous find-
ings on the relationship between neural timescales at rest, estimated
during the intertrial period, and strength of neural encoding during a
task did not always replicate21. This might be a result of task-relevant
cortical activity emerging, or remaining during thefixationperiod21. To
estimate neural timescales at “rest”, work in anesthetized subjects or
during sleep might be a viable alternative9,38,39, although these
approaches come with their own disadvantages and confounds. We
have previously shown that neural timescales estimated from fMRI
data in anesthetized nonhuman primates replicated hierarchies
derived from neuronal spiking data, although they did not perfectly
match9. Amongst many potential reasons for the observed deviations,
one could be that anesthesia provides a special controlled state.
Alternatively, electrophysiological recordings during dedicated rest

Fig. 5 | Neural timescales dynamics reflect fine-grained abstract meaning.
A Neural timescales (τ) estimation for three categories of lever presses: first lever
press, intermediate (“stay”) lever press, and final lever press.BThe change in neural
timescales from resting-baseline before and after the first lever presses. Y-axis:
change in neural timescales from resting-baseline (Δτ). The change in neural
timescales significantly decreased from before to after the lever press in all areas
(p <0.05, one-sidedWilcoxon signed-rank test with Bonferroni correction for eight
multiple comparisons). Squares: median across sessions ± s.e.m for after the event.
Circles: median across sessions ± s.e.m for before the event (see supplementary
Fig. 2N for sample size). C The change in neural timescales from resting-baseline
before and after the final lever presses. Y-axis: change in neural timescales from
resting-baseline (Δτ). The change in neural timescales significantly increased from
before to after the lever press in all areas (p <0.05, one-sidedWilcoxon signed-rank
test with Bonferroni correction for eight multiple comparisons). Squares: median
across sessions ± s.e.m for after the event. Circles: median across sessions ± s.e.m
for before the event (see supplementary Fig. 2O for sample size). D The change in

neural timescales from resting-baseline before and after the stay lever presses. The
change in neural timescales did not significantly change from before to after the
lever press in any area (p <0.05, two-sided Wilcoxon signed-rank test with Bon-
ferroni correction for 8 multiple comparisons). Squares: median across sessions ±
s.e.m for after the event. Circles: median across sessions ± s.e.m for before the
event (see supplementary Fig. 2P for sample size). E The change in neural time-
scales from resting-baseline before and after the leave lever presses. Y-axis: change
in neural timescales from resting-baseline (Δτ). The change in neural timescales
significantly increased frombefore to after the leverpress in all areas (p <0.05, one-
sided Wilcoxon signed-rank test with Bonferroni correction for eight multiple
comparisons). Squares: median across sessions ± s.e.m for after the event. Circles:
median across sessions ± s.e.m for before the event (see supplementary Fig. 2P for
sample size). OFC orbitofrontal cortex, VLPFC ventrolateral prefrontal cortex,
DLPFC dorsolateral prefrontal cortex, ACC anterior cingulate cortex, FEF frontal
eye fields, PM premotor cortex, SMA supplementary motor area. Source data are
provided as a Source Data file.
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periods, in the absence of any task similar to the human resting-state
fMRI literature, could shed light on this issue. We speculate that while
anatomy constrains the spaceof possibleneural timescales, contextual
behavioral demands modulate the observed hierarchy even at rest.
Interestingly, the hierarchy of neural timescales we observedmirrored
functional hierarchies that we found in this dataset with respect to
action32 and spatial navigation encoding31. In these studies, encodingof
spatial navigation and action-related variables was progressively
stronger from ventral to dorsal areas31,32, and hence potentially facili-
tated by longer temporal processing or integration windows as

reflected by slower neural timescales. Our current timescale findings
and the previous task variable encoding findings, match our previous
work demonstrating that the hierarchy of neural timescales at rest in
the medial PFC closely follows a ventro-dorsal functional hierarchy of
the decodability of choice-relevant task variables—i.e., encoding of
task-related variables is stronger in areas with longer neural
timescales15.

We found that neural timescales expanded during task engage-
ment, in agreement with previous studies16,18. Interestingly, we found a
monotonic relationship between the extent of task engagement and

Fig. 6 | Overview of the dynamics of neural timescales. A The hierarchical orga-
nization of cortical neural timescales across species and modalities. Unconstrained
monkey LFP: the task-free hierarchy of neural timescales (see Fig. 3A). Chaired
monkey ECOG: the hierarchy of neural timescales estimated frommonkey ECoGdata
as reported in Gao et al., 2020. Monkey spiking: the hierarchy of neural timescales
estimated from neuronal spiking across studies (see Fig. 1A). The error bars repre-
sent ±s.e.m. across studies. Monkey fMRI: the hierarchy of neural timescales esti-
mated from monkey fMRI data as reported in Manea et al., 2022. Human LFP: the
hierarchy of neural timescales estimated from human LFP data as reported in Gao
et al., 2020. Rodent calcium imaging: the hierarchy of neural timescales estimated
from rodent calcium imaging data as reported in Pinto et al., 2022. B Global and
event-specific changes in neural timescales. We estimated the effect size of the
separation between areas’ change from baseline by calculating the rank-biserial
correlation for each statistical test in Fig. 4. We use the average effect size at each
time point as an index of the differentiation between areas, with low values reflecting
a global change in neural timescales (i.e., most areas displayed the same level of

change), and high values reflecting area-specific changes (i.e., most areas were sta-
tistically different from each other). Y-axis: the average rank-biserial correlation ±
s.e.m. acrossmultiple comparisons (i.e., 28 comparisons per time point). X-axis: time
point before and after the lever presses, with the colors indicating the associated
statistical table in Fig. 4. Circles: mean across statistical tests ± s.e.m (N= 28).
C Overview of the before-after differences across events with seemingly similar
motor and reward properties, but different abstractmeanings. Thefigure depicts the
general effects as observed across areas. For the first lever press, neural timescales
decrease after the event. For the final lever presses, neural timescales increase after
the event. For the leave lever presses, we observe the same effect. For stay lever
presses, there are no significant changes in the before-after change in neural time-
scales. Circles: changes after the event. Squares: changes before the event. Red:
statistically significant before-after changes across all areas. OFC orbitofrontal cor-
tex, VLPFC ventrolateral prefrontal cortex, DLPFC dorsolateral prefrontal cortex,
ACC anterior cingulate cortex (ACC), FEF frontal eye fields FEF, PM premotor cortex,
SMA supplementary motor area. Source data are provided as a Source Data file.
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the overall magnitude of neural timescales over a long temporal scale
which spans the recording session. More task engagement was
accompanied by an expanded hierarchy of overall slower neural
timescales throughout the recording session. Within this session-wide
change with behavioral engagement, we demonstrated local event-
related changes in the magnitude of neural timescales. Although the
action of pressing a lever was similar irrespective of its location in the
broader foraging context, unique temporal dynamics of neural time-
scales were associated with differences in cognitive meaning. We
speculate that this is a result of differences in the underlying compu-
tations associated with these lever presses. Neural timescales thus
seemed to track the temporal persistence of information relevant
during theongoingdecision process in a behaviorally relevantmanner.
For example, while thefirst lever press reflects the decision to forage at
a particular reward station, the action per se can be seen as the end
goal. Interestingly, this is accompanied by a significant drop in the
magnitude of neural timescales. We speculate that accomplishing this
goal could act as a stop signal for integration. In contrast, the last lever
press seemed to reflect ongoing integration related to the animal
needing to decide what to do next, with neural timescales continuing
to expand after the event. Nevertheless, the specific meaning of these
time-locked local changes in the magnitude of neural timescales
remains an outstanding question. Although ecologically valid, uncon-
strained behavior automatically introduces variability that cannot be
controlled for, nor is easily modeled. Our results, therefore, could be
extended by directly manipulating the information integration across
multiple temporal scales, while introducing clear task endpoints.

Despite widespreadmodulation by general task demands, we also
found that the temporal dynamics of neural timescales showed time-
locked changes to certain foraging events that differed by area (see
Fig. 6B).We found a significant differentiation across areas in the time-
locked expansion of the hierarchy linked to certain foraging events.
Notably, however, the ventral to dorsal grouping of areas was pre-
served during this expansion—i.e., the dorsal striatum and OFC
exhibited the lowest level of change from resting-baseline; VLPFC,
DLPFC, and ACC exhibited intermediate levels; and FEF, PM, and SMA
were at the top of the hierarchy, displaying the highest level of change
from resting-baseline. Importantly, although this ventro-dorsal hier-
archy of change was present for all lever presses, its emergence and
persistence depended on the cognitive meaning mentioned above.
Changes in the real world happen on different timescales, and these
results suggest that individual brain areas may contribute distinctly to
behavioral adjustments on different temporal scales. It is not trivial to
quantify unconstrained behavior, and it is even more challenging to
infer the cognitive state of the animal in this setting. As a result, it
remains an open question as to what particular task variables are
associated with the observed variability.

Herewe use LFP rather than single-unit activity to infer timescales
for two reasons. First, LFP activity, in our dataset, offered much
broader spatial and temporal coverage andprovideduswith the ability
to record a large number of areas simultaneously. That is, wewere able
to leverage the nature of this signal to infer neural timescales in all
areas across time throughout the recording session. Second, the
neuronalfiring rates in thisdataset are sparse, andhence, it would have
been difficult, if not impossible, to calculate the autocorrelation
function across time for many cells. It is possible that the results
reported here are unique to LFP activity and do not fully translate to
single-unit activity. Nevertheless, it is important to note that the LFP
signal itself is unique in that it is a continuous signal that can be
leveraged across long temporal windows allowing us to probe the
dynamics of neural timescales. An equivalent analysis could not be
easily accomplished with single-unit activity. Our main goal was to use
whatever brain signal allows us to investigate the temporal dynamics
of neural timescales in this unconstrained foraging context from a
population perspective. Notably, even timescales estimated from

neuronal spiking have been generally described and reported as a
population-level statistic due to their high heterogeneity exhibited at
the single-neuron level (see ref. 10). That being said, although LFP and
single-unit activity are fundamentally different signals, Gao et al.,
2020 showed that macaque ECoG timescales track previously pub-
lished spiking timescales (Murray et al., 2014). Moreover, we have
previously shown that neural timescales estimated from neuronal
spiking and fMRI, a modality closely related to LFP40, display a very
similar hierarchical organization9. There is also evidence that the
unimodal areas to association areas axis of hierarchical organization of
neural timescales is preserved in humans11,14. Given all this work, we
argue that there is an overlap in how neural timescales at rest are
organized across modalities and species. Nevertheless, the exact cor-
respondence between neuronal spiking, LFP, and BOLD timescales and
the extent of their overlap remains unclear. Likewise, the dynamics of
neural timescales across modalities and species remain an empirical
question.

In conclusion, we demonstrate that neural timescales vary with
task engagement that is an aggregate of behavioral state parameters
broadly encompassing foraging-related behaviors, action, and spatial
navigation encoding. Despite the magnitude of neural timescales
expanding with task demands and engagement, we found a stable
hierarchical ordering of the areas’ neural timescales. We not only
provide evidence for the context-dependenceof neural timescales, but
we also demonstrate that these temporal dynamics were complex and
behaviorally relevant. Further investigations and careful experi-
mentation that manipulate the temporal scales over which an animal
must integrate information are needed to better understand the link
between neural timescales and the temporal scales over which beha-
vior unfolds.

Methods
Surgical procedures
Animal procedures were designed and conducted in compliance with
the Public Health Service’s Guide for the Care and Use of Animals and
approved by the Institutional Animal Care and Use Committee of the
University ofMinnesota. Twomale rhesusmacaques (Macacamulatta)
served as subjects (Age: 7-8). Animals were habituated to laboratory
conditions, trained to enter, and exit the open arena, and then trained
to operate the water dispensers. We placed a cranial form-fitted Gray
Matter (Gray Matter Research) recording chamber and a 128-channel
microdrive recording system (SpikeGadgets) over the area of interest.
We verified positioning by reconciling preoperative MRI as well as
naive skull computed tomography images (CT) with postoperative
CTs. Animals received appropriate analgesics and antibiotics after all
procedures. The planning of the chamber and subsequent image
alignment was performed in a 3D slicer. Brain area segmentation fol-
lowed themacaqueD99parcellation inNMTspace (Saleemet al., 2021)

Electrophysiological recordings
We recorded with a 128-channel microdrive system (Gray Matter
Research), targeting a wide swath of the prefrontal cortex ranging
from OFC to PM, and the striatum. Each electrode was independently
moveable along the depth dimension. Neural recordings were
acquired with a wireless data logger (HH128; SpikeGadgets). The data
logger was triggered to start recording with a wireless RF transceiver
and periodically received synchronization pulses. Data were recorded
at 30 kHz, storedon amemorycard for thedurationof the experiment,
and then offloaded after completion of the session. Each reward sta-
tion had a local code running the experiment. Task events triggered a
TTL pulse, as well as a wireless event code. A dedicated PC running
custom code controlled all reward stations, and aggregated event
codes. Syncing of all data sources was accomplished via the Main
Control Unit (MCU; Spikegadgets), which received dedicated inputs
from the pose acquisition system (see below), and reward stations.
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Recording sessions were initiated and controlled by Trodes software
(Spikegadgets). After neural recordings were offloaded, they were
synced with other sources of data via the DataLogger GUI
(Spikegadgets).

We recorded for 4-6 days weekly for a period of 4-6 months. For
an initial period of 2-4 weeks, we lowered up to ten electrodes in each
session until each had punctured the dura and their position was well-
within cortex as confirmed from the MRI reconstruction. Subjects still
performed experiments, but as the signal was noisy, no recordings
were performed during this time. A typical recording day consisted of
multiple stages, including electrode adjustment, an experimental
session, and extraction of the recorded signal. For the duration of the
experiment, on each day, we tracked yields on each electrode and
visually assessed the quality of the signal. If an electrode had poor
yields for up to 5days in a row,wewould lower it up to 1mm(ormore if
it was intended to move to a new area).

All channels were subjected to a custom spike sorting pipeline
(modifiedWaveClust). Channels that exhibited reliable data quality for
spike sorting (manual inspection of each channel, including ISI,
waveform, and amplitudes >1.7xSNR) were then included in the LFP
preprocessing pipeline. To obtain LFPs, we bandpass filtered the raw
signal with a second order, two-pass Butterworth filter and Hand taper
in the range [0.1300] Hz. Only recordings that showed evidence of
neural unit activity (confirmed with separate modified spike sorting
analysis) were used for further analysis (see Supplementary Fig. 1 for
thenumber of channels/area). Subdivisions of thebrainwerecollapsed
to anatomical areas, listed below as defined in the D99 parcellation of
the NMT atlas (Saleem et al., 2021): ACC: 24a’, 24a, 24b, 24b’, 24c, 24c’;
VLPFC: 45a, 45b, 46d, 46v, 46f, 12r; DLPFC: 8bd, 8bs, 9d, 8bm, 9m; FEF:
8ad, 8av; SMA: F3, F6; PM: F1, F2, F5, F7, F4; OFC: 13b, 13m, 13l, 12l, 12m,
12o, 11l, 11m; Striatum.

Behavioral tracking
We developed a system that can perform detailed three-dimensional
behavioral tracking in rhesusmacaques with high spatial and temporal
precision30. The system uses 62 cameras positioned around a specially
designed open field environment (2.45 × 2.45 × 2.75m) with barrels
(four barrels located in the corners; height: 78.8 cm; diameter 46.5 cm)
in which macaque subjects can move freely in three dimensions and
interact with computerized reward stations.

Pose acquisition and reconstruction
A detailed protocol of the pose acquisition and reconstruction pre-
processing can be found here32.

Behavioral task
The environment contained four reward stations (“patches”) that dis-
pensed water with a programmed delivery schedule. The reward sta-
tions were rectangular white boxes with a display monitor placed in
themiddle, a lever to the left, and awaterspout to the right. Thedisplay
monitor indicated the availability of the station for foraging (solid
blue), reward delivery (solid white background with a solid green
cross), or unavailability of the station (i.e., the timeout period; solid
white). Each station delivered a fixed amount of water (1.5ml) per lever
press. At any given time, each of the first four lever presses were
rewarded and the fifth lever press led to a 3-min timeout period (i.e.,
depleted station). The subjects could freely decide when and how to
interact with the reward stations. No reset or deactivation was applied
if the animal left the patch. The timeout could only be triggered after
four rewarded and one unrewarded lever press. Each rewarded lever
press followed the same programmed sequence. The availability of the
reward station was indicated by a solid blue display. A lever press
changed the display to white with a green cross in the center, the
auditory cue was played, and the solenoid opened to dispense reward.
After dispensing, the solenoid closed, the auditory cue ended, and the

green cross disappeared. The display remained white for two addi-
tional seconds before it turned blue again. The fifth lever press was
instead followed by the screen immediately turning white, with no
visual or auditory reward cue and no reward delivery. Other than the
interaction with the reward stations, the measured behavior was the
subject’s unconstrained movement.

Behavioral variables
Speed of movement. For this analysis, we used the 3D center-of-mass
(defined as the midpoint between the hip and neck joint) trajectories.
We calculated speed as the magnitude of the numerical derivative of
the 3D center-of-mass of the subject. We used the tracking data from
166 recording sessions.

Task-free trials. Task-free trials were operationalized as windows
longer than 5 s when the animal was relatively immobile (i.e., the 3D
center-of-mass displacement was less than 40 cm). Task engagement
(i.e., continuous interaction with a reward station) was excluded.

Lever presses. We recorded behavioral data for 197 sessions (Mon-
key W: 102; Monkey Y: 95). One session (Monkey Y) was excluded
from further analyses since there was no reward station interaction.
We divided lever presses into three categories: first, intermediate,
and final lever presses. The first lever press was operationalized as
the first interaction with a reward station after the animal changed
stations. The average number of lever presses per session for this
category was 44.7 (Monkey W: 38.7; Monkey Y: 51.1). The final lever
press was operationalized as any interaction with a reward station
before changing stations. The average number of lever presses
per session for this category was 45.1 (Monkey W: 39.1; Monkey Y:
51.4). We took advantage of the fact that, at times subjects prema-
turely abandoned the reward station after the fourth lever press.
Specifically, we compared responses on the fourth lever press when
the subject decided to leave versus when they decided to stay for a
fifth lever press. The average number of lever presses per session for
the stay category was 19.1 (Monkey W: 18.9; Monkey Y: 19.3). The
average number of lever presses per session for the leave category
was 11.9 (Monkey W: 8.9; Monkey Y: 15.4). The stay lever presses fit
within the intermediate category.

Timescales estimation
PSD. PSDs were estimated using the conventional Welch’s method,
where short-time windowed Fourier transforms are computed from
time series and the mean is taken across time. We used 1 s long
Hamming windows with 500ms overlap. To examine whether the
Hamming window size has an effect on the areas’ relative position in
the hierarchy, we also estimated the PSDs using 500ms (250ms
overlap) and 1500ms (750ms overlap) for 20 recording sessions
where data was available for all areas (Monkey W: 10; Monkey Y: 10).
We did not find any evidence for the Hammingwindow size having an
impact on the areas’ relative position in the hierarchy (see Supple-
mentary Fig. 6).

Spectral parametrization. Spectral parameterization41 was applied to
extract timescales from PSDs16. Briefly, the log-power spectra are
decomposed into a summation of narrowband periodic (modeled as
Gaussians) and aperiodic (modeled as a Lorentzian function centered
at 0Hz) components. To infer timescales, the periodic components
are discarded, and timescales are inferred from the aperiodic com-
ponent of the PSD. Specifically, τ can be estimated from the parameter
k as τ= 1

2πf k
, where f k≈k

1=x is approximated to be the knee frequency,
at which a “knee” in the power spectrum occurs (note: equality holds
when χ = 2). For a detailed mathematical description of the model and
the timescale inference technique, see16,41, The FOOOF algorithm
(version 1.0.0) was used to parameterize neural power spectra.
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Settings for the algorithm were set as peak width limits: [2 8]; max
number of peaks: 3; minimum peak height: 0; peak threshold: 2; and
aperiodicmode: “knee”. Power spectra were parameterized across the
frequency range 1 to 100Hz.

Neural timescales. Timescales were inferred for each channel indivi-
dually and then collapsed across channels within an area by taking the
median to limit the impact of outliers.We excludedwindows for which
the PSD parameterization failed or for which the model fit (i.e., R
squared) was lower than 0.8. Channels with a failure rate higher than
20% were excluded from further analyses. For an overview of the
model fits and the percentage of discarded models per analysis, see
Supplementary Fig. 2 and Supplementary Table 1.

Session-wide. Two sessions for Monkey Y, and three sessions for
Monkey W were excluded due to insufficient time points (i.e., the
recording session was less than 95min). Timescales were inferred by
applying spectral parameterization (see above) to the entire session,
using a 10 s moving window with a 5 s overlap. To ensure an equal
number of windows for each session, only the first 1190 windows were
considered for this analysis (i.e., first ~99min).

Event-related. Timescales were inferred 15 s before and after the
interaction with a reward station. We inferred timescales by using a 5 s
movingwindowwith 2.5 s overlap.We excludedwindows forwhich the
PSD parameterization failed or for which the model fit (i.e., R2) was
lower than 0.8. To maintain the integrity of the time series associated
with each event, the channels with incomplete data (i.e., where at least
one window needed to be excluded) were excluded from further
analyses. To obtain one event-related time series per session, we
subsequently took the median of the resulting neural timescales time
series within individual areas. As a result, for each session, we obtained
one neural timescales time series per area.

Task-free. Timescales were estimated across time over the length of
the task-free windows by using a 5 s moving window with 2.5 s overlap
over the length of the trial. We excluded windows for which the PSD
parameterization failed or for which the model fit (i.e., R2) was lower
than 0.8. To obtain one value per trial, we subsequently averaged the
neural timescales estimated for any given task-free trial. For each
session, themedian task-free neural timescales at rest were used as the
baseline for further analyses.

Statistical analysis. We used the Pearson correlation coefficient to
estimate the relationship between the number of lever presses, speed,
and neural timescales across individual recording sessions.

Given that neural timescales were not normally distributed, we
opted for nonparametric tests to assess statistical significance. We
used Wilcoxon signed-rank tests to assess the statistical significance
within individual areas—i.e., the change from resting-baseline and the
change in neural timescales between neighboring time points. We
used the Mann–Whitney U-test to assess the statistical significance
between brain areas—i.e., the difference in resting-baseline (or task-
free timescales) and the difference in change from resting-baseline
around the events of interest. To correct for multiple comparisons,
we applied Bonferroni correction. Importantly, for all statistical
analyses, we employed the individual sessions as observations rather
than the individual events. This was done to mitigate several
methodological issues: (1) the different number of events per mon-
key; (2) the different number of channels per area per monkey and/
or event.

Multiple regression analysis and subsampling. To perform this
analysis, we only included sessions for which the lever press events,
behavioral tracking, and neural timescales were available. The total

number of data points per area can be calculated as the number of
sessions × number of segments (i.e., 10). To quantify the effect of task
engagement (i.e., the number of lever presses in any given segment)
and the movement of speed on neural timescales, we used a sub-
sampling procedure to estimate the average effect and the confidence
interval of these predictors. For each area, we randomly sampled
without replacement n (i.e., equivalent to the number of sessions)
observations out of the total number of data points. For each sub-
sample, a linear regression model was fitted, with the number of lever
presses and speed as regressors, and neural timescales as the response
variable. For each area, we repeated the procedure 1000 times. For
each predictor, we assessed the difference between areas using an
independent sample t-test. For each area, we assessed the difference
between predictors using a paired t-test. To correct for multiple
comparisons, we applied Bonferroni correction.

Bayesian regressionmodel. To assess the relationship between brain
areas and session-wide neural timescales, we modeled the predictor
(i.e., brain area) as a monotonic effect. This approach is advantageous
for ordinal predictors, in this case, the hierarchical organization of
brain areas, without falsely treating them as continuous, unordered
categorical variables or ordered categorical variables with equidistant
levels. In this approach, one estimates one parameter (b) which cap-
tures the direction and size of the effect—i.e., the average increase/
decrease in the dependent variable associated with the variable.
Additionally, one estimates the percentages of the overall increase/
decrease that is associated with each of the differences between
neighboring variable levels - and hence, these parameters determine
the shape of the monotonic effect. For a more detailed explanation,
see ref. 42. Brain area wasmodeled as a monotonic effect and session-
wide neural timescales served as the dependent variable.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The neural timescales generated in this study have been deposited in
the Dryad database under accession code https://doi.org/10.5061/
dryad.8sf7m0cx1. The dataset analyzed during the current study is
available from the corresponding author on reasonable
request. Source data are provided with this paper.

Code availability
All code and toolboxes used in this study are readily available and cited
in the manuscript.
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