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Resources are rarely distributed uniformly in the environment. Food, 
water and other vital commodities more often occur in spatially local-
ized and temporally ephemeral patches1. Patchy environments force 
animals to balance the benefits of staying in a depleting patch and 
leaving for a richer one2. According to the marginal value theorem 
(MVT) of behavioral ecology, animals should leave patches when 
their intake rate diminishes to the average intake rate for the overall 
environment2,3. Organisms as diverse as worms, bees, wasps, spiders, 
fish, birds, seals and even plants obey the MVT3–6. Ethnographic 
evidence demonstrates that human subsistence foragers also obey the 
predictions of the MVT in their hunting behavior7, and laboratory 
findings suggest that monkeys may do so as well8. The generality 
of the MVT solution to the patch-leaving problem suggests that the 
underlying mechanism is fundamental to the way organisms make 
decisions4. The neuronal basis of patch-leaving decisions, however, 
remains unknown.

Building on recent progress toward understanding the neuronal 
mechanisms mediating perceptual decisions9, we hypothesized that 
the brain maintains a decision variable specifying the current relative 
value of leaving a patch. Conceptually, a decision variable is an analog 
quantity that incorporates all sources of information—in this case, 
reward size, handling time, search time and travel time—evaluated 
by the decision policy to generate a behavioral choice9. The hypoth-
esized decision variable gives rise to a decision via comparison with a 
specific threshold. For simplicity, we assume that this process is analo-
gous, although not necessarily isomorphic, to the neural integrate- 
to-threshold processes thought to mediate perceptual judgments9–13. 
We further conjecture that travel time between patches influences 
leaving decisions by changing the rate at which the decision variable 
grows, the threshold or both10,11.

To test these hypotheses, we developed a virtual foraging task 
in which rhesus monkeys chose one of two targets. One target 

corresponded to remaining in the patch, and choosing it yielded a 
juice reward that declined each time it was chosen. The other target 
corresponded to leaving the patch, and choosing it yielded only a 
delay before the opportunity to choose again at a replenished patch. 
Monkeys’ behavior closely matched the predictions of the MVT. We 
then recorded activity of neurons in the dorsal anterior cingulate cor-
tex (dACC) while they performed the task.

dACC has been linked to reward outcome monitoring and behavioral 
adjustment14–16, as well as to signaling reward outcomes and predicting 
changes in behavior17–24. Notably, ACC dysfunction attends clinical 
disorders that are associated with difficulty in abandoning maladap-
tive patterns of behavior or cognition, including depression, addiction, 
obsessive-compulsive disorder and Tourette Syndrome25–27.

We found that dACC neurons responded each time monkeys 
made a choice and that these responses increased with time spent 
in the current patch. Monkeys abandoned a patch when neuronal 
responses reached a threshold associated with a particular travel 
time. When travel time between patches was high, the gain of  
neuronal responses with each decision to remain in the patch was 
smaller and the threshold for patch abandonment was higher than 
when travel time was short. Overall, neuronal response gain and 
threshold jointly predicted patch-leaving decisions. These findings 
suggest that dACC mediates patch-leaving decisions using a common 
integrate-to-threshold mechanism.

RESULTS
For each choice there were two options (Fig. 1a). Choosing the stay 
(short blue) target led to a juice reward in 0.4 s (handling time). The 
value of this reward declined by 19 µl ± ε (s.e.m., ε = 1.9 µl) each time 
it was chosen, mirroring the diminishing returns common to patchy 
foraging environments (Fig. 1b). Choosing the leave (tall gray) target 
led to no reward and a long delay that was fixed in a patch and varied 
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Deciding when to leave a depleting resource to exploit another is a fundamental problem for all decision makers. The neuronal 
mechanisms mediating patch-leaving decisions remain unknown. We found that neurons in primate (Macaca mulatta) dorsal 
anterior cingulate cortex, an area that is linked to reward monitoring and executive control, encode a decision variable signaling the 
relative value of leaving a depleting resource for a new one. Neurons fired during each sequential decision to stay in a patch and, 
for each travel time, these responses reached a fixed threshold for patch-leaving. Longer travel times reduced the gain of neural 
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closely matched behavioral decisions than any single task variable. These findings portend an understanding of the neural basis of 
foraging decisions and endorse the unification of theoretical and experimental work in ecology and neuroscience.
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between patches, and reset the value of the stay target to its initial 
high value (306 µl). We defined search time as any additional time 
spent in the patch not explicitly waiting and residence time as total 
time from arrival at a new patch, including handling times, search 
time and intertrial intervals (ITIs). Travel time was explicitly cued on 
all trials by the height of the gray bar and was reset to a new random 
value each time it was chosen (0.5 to 10.5 s, uniform distribution). 
The blue and gray bars alternated sides each time the leave target 
was chosen; any potential laterality in neural tuning functions was 
assumed to average out (Supplementary Data 1). In contrast to some 
natural foraging decisions, there was no physical travel during the 
travel time, nor was any action required during this delay; the only 
explicit cost of delay was opportunity cost. These simplifications are, 
we believe, not critical, as most other laboratory foraging tasks eschew 
effort requirements (for example, see refs. 8,28).

Monkeys approximate rate maximization according to MVT
As travel time between patches grows, so does the rate-maximizing 
residence time (Fig. 1c). Consistent with the MVT, monkeys’ patch-
residence times rose with increasing travel time and were nearly rate 
maximizing (P < 0.0001, β = 1.247, regression of residence time (s) 
against travel time (s); Fig. 2a). These effects were found in both 
monkeys individually (P < 0.0001 for both individuals, β = 1.11  
for monkey E, β = 1.47 for monkey O; Supplementary Data 2 and 
Supplementary Fig. 1). Overall, both monkeys obtained 97.2% of the 
reward obtained by the best-fit rate-maximization algorithm (note that 
this is a measure of reward obtained versus maximal obtainable, not a 
measure of variance in behavior explained). Both monkeys remained 

in patches slightly longer than predicted by the MVT (mean 2.2 s 
longer, P < 0.01, Student’s t test). This slight over-staying may reflect 
a weak preference for immediate small rewards over delayed large 
rewards29–31, a slight over-estimate of travel times or even a status  
quo bias32. Leaving time was not influenced by travel time on the 
previous patch (regression of residence time against previous travel 
time, P = 0.44; Supplementary Data 3 and Supplementary Fig. 2).

Monkeys attempting to maximize local intake rates over the long-
term should consider handling time as well as travel time2,3. To con-
firm that monkeys do so, we performed an additional behavioral 
experiment in which handling times, but not travel times, were varied 
from patch to patch (11 sessions, 6 in monkey E, 5 in monkey O). In 
each patch, handling time took one of ten values: 0.1, 0.4 , 0.6, 1.1, 
1.6, 2.1, 2.6, 3.1, 3.6 or 4.1 s. We cued handling time by varying the 
height of the blue rectangle; travel time was held constant at 5 s. We 
performed these experiments after the monkeys had learned the task, 
but before we began physiological data collection; monkeys received 
one full day of training each. As predicted, patch residence times 
declined with increased handling time (regression, β = −3.71 for both, 
−3.81 for E and −3.62 for O, P < 0.001 in all cases; Fig. 2b). Leaving 
times did not differ systematically from the rate-maximizing predic-
tions at any of the ten points (P > 0.05 in all cases, Student’s t test). As 
an additional control, during these sessions, we interleaved standard 
fixed handling time patches with variable travel times. The average 
residence time on these trials was consistent with those obtained in 
the handling time control (Fig. 2b).

A natural question is whether the monkeys’ foraging behavior 
may be explained in a delay-discounting framework30,33. In such a 
framework, each leave/stay decision is regarded as a choice between 
a smaller-sooner stay reward and larger-later leave reward (that is, 
the first reward in the new patch). Such a decision model would 
naturally account for the monkeys’ observed tendency to stay longer 
in patches when faced with longer travel times, as the delay associ-
ated with patch-leaving would lead to discounting of the larger-later 
reward. To test this idea, we compared an empirically derived sequen-
tial foraging model inspired by the MVT against a standard delay-
discounting model in which the hyperbolic discount parameter k  
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Figure 1  Patch-leaving task. (a) Task design. After fixation, two eccentric 
targets, a large gray and a small blue rectangle, appear. Monkey chooses 
one of two targets by shifting gaze to it. Choice of blue rectangle (stay in 
patch) yields a short delay (0.4 s, handling time) and reward whose value 
diminishes by 19 µl per trial. Choice of gray rectangle (leave patch) yields 
no reward and a long delay (travel time) whose duration is indicated by the 
height of the bar, and resets the value of the blue rectangle at 306 µl.  
Travel time varies randomly from patch to patch and ranges from 0.5 
to 10.5 s. (b) Plot of the cumulative reward available in this task as a 
function of time in patch, given the search times associated with animals’ 
performance in the task (black line). Data are generated on the basis of 
average times associated with performance. (c) Plot of reward intake rate 
derived from a range of patch residence times (x axis: range of residence 
times). Data are shown for each of ten travel times (1-s intervals from 0.5 
to 10.5 s). Rate-maximizing time in patch (the curves’ maxima, shown by 
the black line) increases with increasing travel time. Data are generated 
based on average times associated with actual animal performance.
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Figure 2  Monkeys obey the marginal value theorem in a virtual patchy 
foraging task. (a) Monkeys remain in the patch longer as travel time rises, 
as predicted by the marginal value theorem (MVT). Each dot indicates a 
single patch-leaving decision (n = 2,834 patch-leaving events). The time 
at which the monkey chose to leave the patch (y axis) was defined relative 
to the beginning of foraging in that patch. Travel time was kept constant 
in a patch (x axis). Data from both monkeys is shown. Behavior (average 
is traced by the blue line) closely followed the rate-maximizing leaving 
time (red line), albeit delayed by 0–2 s. (b) Performance of two monkeys 
on handling time variant of patch-leaving task. In this control experiment, 
travel time was held constant (5 s) and handling time was randomly reset 
between each patch to have one of ten values. Patch residence time 
fell as handling time rose, consistent with the MVT. Observed times are 
shown with black dots; averages are shown with solid blue line. Best-fit 
line (dashed blue line) is nearly identical to rate-maximizing (red line). 
Average patch residence time on the interleaved standard travel time 
version of the task was consistent with this curve as well (red dots).
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was estimated by maximum likelihood (best fit, k = 1.26 s−1). The 
Akaike weights for the two models (a measure of goodness of fit that 
accounts for different numbers of parameters in different models; 
wMVT = weight for MVT model, wDD = weight for delay-discounting 
model) clearly favored the sequential-trial foraging model, endorsing 
the MVT account of decision making in our task (wMVT/wDD = 1.31 
× 1052) (Supplementary Data 4 and Supplementary Fig. 3).

Neurons integrate information over multiple actions
We recorded the activity of 102 single neurons in dACC in two mon-
keys performing this task (52 neurons in monkey E, 50 in monkey O;  
Fig. 3). For an example neuron, neural activity was aligned to the end 
of the choice saccade (time zero; Fig. 3a). Firing rate rose to a peak 
around the time of the choice saccade and then returned to a baseline 
value between trials. Such brief, peri-saccadic responses, often modu-
lated by reward size and task context, are characteristic of neurons in 
dACC18,21,22,24. We focused on neuronal activity in the 500-ms epoch 
preceding saccade onset (pre-saccadic epoch). For most analyses, we 
focused on neural data associated with choosing to remain in the patch 
and excluded neural data associated with choosing to leave the patch 
(exceptions are noted). Data for individual subjects matched the com-
bined data (Supplementary Data 5 and Supplementary Fig. 4).

We next examined the responses of the example neuron from four 
time periods relative to the beginning of foraging in the patch (t < 
7.5 s, 7.5 < t < 15, 15 < t < 22.5, and 22.5 < t; Fig. 3b). For this neuron, 
responses rose with cumulative time spent foraging in the patch. To 
quantify this enhancement, we measured pre-saccadic responses in a 
series of non-overlapping 5-s time bins (Fig. 3c). We included in each 
time bin all of the decisions in which the end of the saccade occurred 
in that bin. We found that firing rates rose with increasing patch resi-
dence time (β = 0.31, P < 0.0001, linear regression of firing rate (spikes 
per s) against time in patch (s)). The same effects were observed in 
the population average firing rates (β = 0.18, P < 0.0001, regres-
sion; Fig. 3d, Supplementary Data 6 and Supplementary Fig. 5). 
We observed a significant (P < 0.05) positive regression coefficient 
in 49 neurons (average β = 0.24 in significantly modulated cells),  

a significant negative slope in 10 (average β = −0.09) and no signi
ficant slope in the remainder (P > 0.05, n = 43, average β = 0.041). The 
49 neurons with positive slopes constitute the focus of subsequent ana
lyses (Supplementary Data 7 and Supplementary Figs. 6 and 7).

We next performed the same analysis on two later epochs. In the 
post-saccadic epoch, we measured firing rates during the 400-ms 
handling time period beginning at saccade termination and ending 
with the reward. In the ITI epoch, we measured firing rates during 
the 1-s period beginning after reward delivery and ending when 
the next set of choice options was presented to the monkey. For the 
post-saccadic epoch, we observed a positive regression coefficient 
in 44 neurons (P < 0.05, average β = 0.15 in significantly modulated 
cells), a negative coefficient in 8 (average β = −0.1), and no significant 
effect in the remainder (P > 0.05, 50 neurons, average β = 0.010). Nor 
was there much evidence of an effect in the ITI epoch at the popu
lation level; we observed a significant correlation between firing rates  
in the ITI and patch residence time in only four neurons (average  
β = 0.02), all positive in sign. These numbers are similar to what 
would be expected by chance (Supplementary Data 8). This result 
suggests that dACC does not maintain a representation of time spent 
foraging in a patch across multiple actions; the locus of this trace in 
the brain remains to be determined. Overall, we observed weak or no 
effect of saccade direction on responses (Supplementary Data 1).

Threshold-crossing of dACC firing predicts patch-leaving
The gradual rise in neural responses across decisions to stay in a 
patch resembles the within-trial rise-to-threshold processes observed 
in lateral intraparietal area, frontal eye fields (FEFs) and superior 
colliculus during motor preparation and decision-making10–12,34,35. 
We wondered whether a similar rise-to-threshold model might 
also account for the relationship between firing rates in dACC and 
patch-leaving decisions. To test this idea, we performed an ana
lysis modeled on a previously developed method11 for probing the 
relationship between the firing rates of FEF neurons and saccade 
initiation. Although FEF firing rates in that study11 rose gradually 
to a fixed threshold on a single trial, the analogous rise in our study 
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Figure 3  Firing rates of dACC neurons integrate patch residence time  
and travel time in computations occurring over multiple actions.  
(a) Average reward-aligned peri-stimulus time histograms (PSTHs)  
for example cell. Neuronal responses were briefly enhanced around  
the time of saccades and then fell to a baseline level between trials.  
Time zero indicates end of saccade, indicating choice. Dark gray box,  
pre-saccadic epoch. Light gray box, post-saccadic epoch. Black rectangle  
indicates the average duration of the trial. (b) The firing rate during the  
peri-saccadic period rose with time in patch. Each panel indicates  
responses selected from one range of patch residence times.  
(c,d) Average responses of example neuron (c) and population of neurons (d) occurring in a series of 5-s analysis epochs (gray box in a). Firing rates 
increased as time in patch increased. Error bars represent s.e.m. (e) Histogram of regression coefficients relating firing rate in pre-saccadic epoch to 
time in patch for each neuron in the population (n = 102). Significant effects are indicated with gray boxes (P < 0.05).
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was associated with changes in firing rate occurring in discrete bouts 
over multiple actions. Moreover, firing rates of FEF neurons gradually 
rise to threshold over tens of milliseconds, whereas the amplitudes 
of discrete dACC neuronal responses in our task increased over tens 
of seconds, orders of magnitude longer. Nonetheless, these analytical 
methods in principle generalize readily to our task. Our analysis asked 
two questions. First, does variability in patch-leaving times correlate 
with variability in the rate at which neural activity rises? Second, do 
firing rates rise to the same level regardless of the precise time mon-
keys choose to leave the patch for a given travel time?

We first divided all patch-leaving choices into residence time 
quartiles in each travel time (medians of each set for the aggregate 
response, earliest = 14.1 s, early = 19.2 s, late = 23.5 s, latest = 32.2 s; 
Fig. 4a). We refer to this classification of trials as the ‘earliness’ for 
each patch. We repeated the classification of leaving times into four 
different earliness bins for each neuron separately. By design, earli-
ness is orthogonal to travel time, and so neural correlates of earliness 
and travel time are independent. For our example neuron, firing rates 
were significantly higher for the earliest than for the early patches 
(difference = 1.8 spikes per s, P = 0.02; Fig. 4b), significantly higher 
for the early than for the late patches (difference = 2.0 spikes per s,  
P < 0.01) and significantly higher for the late than for the latest patches 
(difference = 4.7 spikes per s, P < 0.01).

We next calculated the average neural responses in a series of 5-s 
time bins encompassing multiple choices separated by earliness level. 
For both the example neuron and the focal population of neurons 
(n = 49 of 102, see above), we found that the rate of rise of firing 
rates was positively correlated with earliness (Fig. 4c,d). We quan-
tified these effects by calculating the regression weight for firing 
rate as a function of patch residence time separately for each of 
the four earliness bins. The slope for the earliest patches (β = 0.71)  
was greater than the slope for the early patches (β = 0.52, P < 0.01, 
bootstrap test), which was greater than the slope for the late patches 
(β = 0.44, P < 0.01), which was in turn greater than the slope for the 
latest patches (β = 0.39, P < 0.01). The same effects were observed 
in the population average responses (P < 0.005 for each compari-
son). Slopes decreased monotonically from earliest to latest quartiles  
for 32 of 49 neurons (65%). The remainder (n = 17) showed no 
such effect.

We then examined whether firing rates rose to the same threshold 
in each of the four earliness bins. For this analysis, we only exam-
ined firing rates for patch-leaving choices, which we had ignored in 
previous analyses. We took these firing rates to be a proxy for the 
patch-leaving threshold. Firing rates did not depend on earliness for 
the example neuron (regression of firing rate against earliness level, 
P = 0.45; Fig. 4c) or the population (P = 0.88; Fig. 4d), which is con-
sistent with the threshold hypothesis. We observed no relationship 
between earliness and threshold for the population average response 
(regression, P = 0.79). We observed a significant effect of earliness 
on threshold for only a small number of cells, 6 out of 49 signifi-
cantly modulated neurons (12.2%, P < 0.05). Finally, we found that 
neuronal responses aligned to the patch-leaving trial for different 
earliness levels overlapped (Fig. 4e). For the population of neurons, 
firing rates rose to approximately the same level on the last decision 
to stay in the patch before choosing to leave the patch (regression,  
β = −0.003, P = 0.51).

Travel time influences gain and threshold of neuronal responses
Assuming that patch-leaving decisions are governed by a threshold 
process, variation in travel times should influence the threshold. 
There are three basic mechanisms by which travel time could influ-
ence the accumulation-to-threshold process (Fig. 5a). First, travel 
time could increase the rate of rise of the decision variable. Second, 
travel time could adjust the threshold level. Third, travel time could 
influence the baseline. Our next analysis was designed to determine 
which of these processes are implemented in dACC.

We first examined the relationship between travel time and 
response gain (Fig. 5b,c). For each neuron, we divided patches into 
ten travel time deciles (equal-sized sequentially classified bins, 1 to 
10 ± 0.5 s). In each decile, we calculated the slope of firing rate versus 
time in patch. We found a significant negative correlation between 
travel time and regression slope for our example neuron (regression,  
β = −0.04, P < 0.01; Fig. 5b) and for the 49 cells in the analysis population  
(β = −0.033, P < 0.01; Fig. 5c). We observed significant negative effects 
in 29 of 49 of the focal population of neurons, positive correlations 
in 6, and no effect in 14 (P < 0.05). Across the entire population, we 
found a significant negative correlation in 41 of 102 neurons (P > 0.05),  
a positive correlation in 7 neurons and no effect in 54 neurons.

Figure 4  Firing rates of dACC neurons 
rise to a threshold associated with patch 
abandonment. (a) Plot of patch-leaving  
times, separated by whether they were  
earlier or later than the average leaving time. 
We divided patch-leaving decisions into  
four categories: earliest (black), early (red), 
late (cyan) and latest (magenta). These 
variables are independent of travel time  
and time in patch, meaning that, for example, 
earliest trials are equally likely to occur at  
any travel time (x axis) and any time in  
patch (y axis). (b) PSTH for an example 
neuron separated by earliness level. dACC 
neurons responded sooner and more strongly 
on earlier trials than on later trials. Black 
rectangle indicates the average duration of 
the trial. (c,d) Average firing rates of example 
neuron (c) and population (d) separated  
by earliness level. Firing rates rose faster  
for earlier patches but asymptoted at the same 
level. Error bars represent s.e.m. (e) Plot of 
average firing rate of population of neurons, aligned to final trial in patch (x = 0 on graph) and showing the final three trials before switch (x = 1, 
2 and 3). Firing rates rose to the same level on final trial, as well as preceding trials. Error bars represent s.e.m.
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We next examined the relationship between travel time and thresh-
old (Fig. 5d,e). As above, we assumed that the firing rate in the epoch 
immediately preceding patch-leaving provides a proxy for thresh-
old. For our example neuron, the threshold rose with travel time  
(β = 1.53, P < 0.01, regression of firing rates (spikes per s) against 
travel time (s); Fig. 5d). There was also a significant, but weaker, 
correlation between travel time and firing rate on the last choice to 
stay in the patch before patch-leaving, consistent with the idea of a 
gradual rise-to-threshold process (β = 1.32, P < 0.025); the whole 
population showed similar effects (Fig. 5e). For the focal population 
(n = 49), threshold rose with travel time (β = 0.92, P < 0.01), as did 
previous-trial responses (β = 0.69, P < 0.001). We observed a rise in 
threshold in 37 of 102 neurons (regression, P < 0.05, a negative effect 
in one neuron, no effect in the rest).

If travel time influences threshold levels, do thresholds actually 
remain constant for different leaving times, after accounting for 
travel time? To answer this question, we measured neural responses 
on patch-leaving trials in five groups of travel times (0.5 to 2.5, 2.5 to 
4.5, 4.5 to 6.5, 6.5 to 8.5 and 8.5 to 10.5 s). Two facts suggest that they 
were constant across earliness level (see above) after accounting for 
travel time. First, in each of these travel time groups, earliness did not 
influence firing rate in the pre-saccadic epoch of the patch-leaving 
trial (P > 0.2 in all cases). Second, there was no significant interaction 
between earliness and travel time (P = 0.67, two-way ANOVA, four 
levels of earliness and five travel times, main effect of earliness = 0.06 
spikes per s per bin).

Finally, we considered whether travel times influence baseline firing. 
We reasoned that such an effect would be most apparent on the first 
few choices in a new patch. We found no effects of travel time on firing 
rate responses occurring in the first 5 s of a patch (ANOVA of normal-
ized firing rate against travel time, P = 0.41) and a significant effect in 
nine neurons individually (P < 0.05). The frequency of these effects is 
not much more than would be expected by chance (n = 5.1 neurons,  
P = 0.067, binomial test), and the size of the effect was weak (average 

difference between 1- and 10-s travel times 
was 0.09 spikes per s). Moreover, of these 
nine neurons, six showed increasing fir-
ing rates with longer travel times. Our data 
therefore do not endorse the idea that travel 
times influence baseline neuronal firing rates  
in ACC.

DISCUSSION
Choosing when to leave a depleting resource 
patch is a ubiquitous natural decision prob-
lem that is central to foraging theory and 
behavioral ecology2,3. Although the brains 
of animals have undoubtedly been shaped 
by evolutionary pressures for foraging effi-
ciency, the neural processes that mediate 
the simple decision to give up on one patch 
and move to another remain obscure. Our 
findings suggest that, during foraging, the 
primate brain computes a decision variable 
whose magnitude corresponds to the relative 
value of leaving a patch, that this value rises 
to a threshold associated with patch leaving, 
and that travel time between patches governs 
both the threshold and the rate at which this 
decision variable rises. This decision variable 
is represented in the firing rates of neurons in 

the dACC, a frontal lobe structure associated with reward monitoring 
and behavioral adjustment14–16.

If the thresholding process that we propose were to occur at the 
level of dACC or its inputs, we would expect to see the outcome of 
the threshold process in the responses of dACC neurons. Instead, we 
observed a signal that varied continuously with time in patch, sug-
gesting that the thresholding process occurs downstream of dACC, 
perhaps in FEFs or some other premotor structure. Notably, our 
results imply that a downstream neuron cannot judge whether it is 
time to leave the patch solely by querying the output of dACC; it needs 
to have information about travel time, likely in the form of the change 
in its threshold. We speculate that such control may be implemented 
through neuromodulatory inputs to the dACC, perhaps via dopamine 
or norepinephrine36,37.

Responses of dACC neurons do not uniquely represent any single 
variable in the MVT equations. The MVT is a description of forag-
ing behavior at the computational level, whereas our data support a 
particular mechanism by which the decision process could be imple-
mented38. Thus, although we claim that our hypothesized decision 
variable encodes the relative value of leaving a patch, we could just as 
easily argue that it encodes the negative value of staying (indeed, this 
would be consistent with error-related theories of ACC function16). 
Because these functional mechanisms resemble those known to sup-
port basic perceptual and mnemonic decisions10–13,34, our findings 
endorse the idea that the brain uses a small suite of common mecha-
nisms to solve diverse problems in multiple domains.

The broad applicability of the MVT to such a wide array of organ-
isms underscores the fact that dACC is unlikely to be the sole neural 
locus of the decision process, even in organisms with brains similar 
to ours. Indeed, these mechanisms may not even be limited to brains. 
Many organisms that lack brains, including amoebas, slime molds 
and plants, exhibit behavior that is consistent with the MVT6,39,40. 
We conjecture that such organisms solve the patchy foraging problem 
in much the same way that monkeys do, namely by maintaining and 
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possible mechanisms by which exogenous factors may govern a rise-to-threshold process. Shorter 
travel times can hasten patch-leaving (leftward movement on x axis) by increasing the rate of rise, 
reducing the threshold or elevating the baseline. (b,c) Evidence that travel times change rate of 
rise. Example neuron (b) and population (c) average regression slopes (beta weights) for firing rate 
as a function of time in patch. Beta weights fell as travel times rose, indicating that shorter travel 
time increases neuronal response gain. Error bars represent s.e.m. (d,e) Evidence that travel time 
influences firing threshold for patch abandonment. Firing rate on patch-leaving trial was taken as 
a proxy for threshold level. Example neuron (d) and population (e) show increasing firing rates on 
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controlling a representation of the relative value of leaving a patch. 
Thus, diverse organisms may solve common problems using similar 
algorithms that are implemented very differently38. Even in organisms 
with brains similar to ours, given the high redundancy of decision 
signals across brain areas in primates41, we predict that similar signals 
might be observed in other regions, including the dorsolateral pre-
frontal cortex, lateral intraparietal area and posterior cingulate cortex, 
although such signals might be convolved with other information 
such as target location or movement metrics.

Relation to previous studies
Our findings are broadly consistent with prior studies showing that 
dACC monitors reward information from many sources and signals the 
need to adjust behavior in some manner17,18,22,23,42–46. Our results cor-
roborate these earlier results and extend them in four important ways. 
First, we found that dACC responses vary continuously with the extent 
to which circumstances favor the decision to move on, even if leaving 
does not occur. This observation supports the idea that dACC neurons 
represent a scalar decision variable reflecting the relative value of leav-
ing. The relative value of switching behavior was not manipulated in 
a previous study in which all non-switch trials were, in all important 
respects, the same23. Second, we found and measured a specific thresh-
old at which leaving, and by extension switching, occurs. Third, we 
identified two mechanisms by which exogenous factors govern patch-
leaving behavior. Finally, we found that neuronal activity in dACC 
promotes disengagement in a relatively natural task that is directly 
modeled on real-world foraging situations. These results directly link 
dACC neuronal activity to behavior in a naturalistic context and may 
extend to situations outside the laboratory in which dACC dysfunc-
tion has been implicated, including addiction, depression, obsessive- 
compulsive disorder and Tourette syndrome25–27.

At first glance, our results appear to contradict those obtained by 
an earlier study that reported increasing firing rates of dACC neurons 
with increasing proximity to reward24, whereas we found increasing 
firing rates in anticipation of sequentially smaller rewards. We believe 
that the two sets of findings are fully concordant. In our study, firing 
rates rose as the monkey approached the decision to abandon the 
current patch for a new one. In the earlier study, firing rates increased 
as the monkey neared the rewarded action. In both cases, firing rates 
of dACC neurons marked progression through a sequence of actions 
toward a salient behavioral event: the reward in their task, patch-
leaving in ours. Together, our results suggest a broader view, namely 
that dACC neurons do not signal reward value per se, but rather that 
their responses encode an abstract decision variable that is suitable 
for guiding a variety of different modifications in behavior, whether 
generated endogenously or exogenously.

Our findings may also initially appear to contradict results from our 
earlier studies of dACC neurons21,22. Previously, we found that the 
firing rates of dACC neurons reflected both real and fictive rewards, 
and generally did so with higher firing rates for larger rewards22. In 
that study, however, large rewards, both real and fictive, promoted 
a behavioral strategy that led to potentially larger rewards. Indeed, 
trial-to-trial variations in firing rate in that study positively covaried 
with likelihood of adjusting behavior on the next trial. In other words, 
higher firing rates in both studies predicted the likelihood that the 
monkey would successfully incorporate new information about the 
world into an ongoing decision to change behavior.

In another study, we found that neuronal activity in dACC showed 
weak, but significant, selectivity for saccade direction, in addition to 
anticipated real and fictive reward size21. In contrast, here we found 
no evidence for spatial selectivity in neuronal responses. These differ-

ences likely reflect task design. We used eight targets in the previous 
study, but only two saccade targets here, thus weakening our sensitivity 
to spatial selectivity, especially bimodal tuning common in dACC21. 
Also, the task used in the prior study demanded that monkeys carefully 
distinguish adjacent, physically similar targets to evaluate the associated 
reward outcomes, whereas the two targets were widely separated and 
physically distinct in the current study. We hypothesize that the greater 
demand for attentional resources associated with spatial locations in 
that task accentuated spatial tuning in the earlier study.

Conclusion
Our virtual foraging task is an ersatz idealization of a real patchy 
foraging environment. Given that foraging often involves physical 
effort, these results are only a first step on the path to understanding 
real foraging decisions. Because of the clear links between ACC func-
tion and effortful choices, dACC seems particularly well positioned 
to guide real-world foraging choices and is likely involved in these 
choices. Thus, we believe that our results provide a useful advance 
toward understanding natural value–based decisions and forge a criti-
cal link between systems neurobiology and behavioral ecology.

Animals’ bodies are have evolved to efficiently exploit the resources 
in their environments. Natural selection has also acted on the nervous 
systems of these animals to enable the adaptive action of their bod-
ies. Few studies have linked neural computations to specific types of 
naturally occurring foraging decisions. Our study portends a more 
general understanding of prey selection, diet selection and more 
complex foraging problems3,47. Ultimately, these results endorse the 
unification of theoretical and experimental work in the ecological 
and neural sciences48.

Methods
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
Surgical procedures. All procedures were approved by the Duke University 
Institutional Animal Care and Use Committee and were designed and conducted 
in compliance with the Public Health Service’s Guide for the Care and Use of 
Animals. Two male rhesus monkeys (Macaca mulatta) served as subjects. Initially, 
a head-holding prosthesis was implanted in both animals using standard surgical 
techniques. Six weeks later, animals were habituated to laboratory conditions and 
trained to perform oculomotor tasks for liquid reward. A second surgical proce-
dure was then performed to place a plastic recording chamber (Crist Instruments) 
over dorsal anterior cingulate cortex. Animals received analgesics and antibiot-
ics after all surgeries. Throughout both behavioral and physiological recording 
sessions, the chamber was kept sterile with regular antibiotic washes and sealed 
with sterile Teflon caps.

Behavioral task. Monkeys were placed on controlled access to fluid outside of 
experimental sessions to motivate behavior. Horizontal and vertical eye posi-
tions were sampled at 1,000 Hz by an infrared eye-monitoring camera system (SR 
Research). Stimuli were controlled by a computer running MATLAB (MathWorks) 
with Psychtoolbox and Eyelink Toolbox49,50. Visual stimuli were small colored  
rectangles on a computer monitor placed directly in front of the animal and centered 
on his eyes. A standard solenoid valve controlled the duration of juice delivery. We 
estimated the precision of fluid volume delivered by the solenoid across the range of 
open time commands used in this study. Given that the s.e.m. in volume increased 
with the mean, we calculated the coefficient of variation as a measure of precision, 
and this value was 0.29. Because of this small uncertainty in liquid volume delivered, 
the reported values should be taken as approximate.

Our task was designed to mimic the critical elements of the patch-leaving task 
studied in foraging theory2,3. On each trial, a small yellow square appeared in the 
center of the monitor (<0.5 degrees of visual angle). Following its appearance, 
the monkey aligned gaze with the square to indicate his readiness to begin the 
trial. Once the monkey acquired fixation (± 0.5 degrees), two eccentric targets 
appeared, one on the left and one on the right (300 pixels from fixation). One 
target was a small blue rectangle (remain in patch option) and the other was a 
gray rectangle (leave patch option) that was the same width (80 pixels) and taller 
(precise height depending on condition). One pixel is approximately equal to 
0.024 degrees of visual angle.

Following a 500-ms delay, the central fixation square extinguished and the 
monkey was free to select either of the two targets by shifting gaze to it (±2 degrees 
from the center of the rectangle). Following choice of either target, the rectangle 
began to shrink at a constant rate (65 pixels per s) until it disappeared, a reward 
was given (if the blue ‘stay’ target was chosen), and the ITI began (1 s). Because the 
rate of bar shrinking was constant, the height of the bar provided an unambiguous 
cue to the delays associated with the two options on every trial.

The delay associated with the blue stay (that is, remain in patch) rectangle 
occurred before the reward and was isomorphic to the handling time in foraging 
decisions (set at 400 ms in the task used for recording, that is, the variable travel 
time task). The delay associated with the gray ‘switch’ (that is, leave the patch) 
rectangle was analogous to the travel time in foraging decisions (ranging from 
0.5 to 10.5 s in this experiment). It was set at a random value on each patch, but 
did not vary in a patch. The fixed delay (ITI) between trials was uncued, but was 
always the same (1 s). This fixed delay is isomorphic to a fixed search time in 
foraging theory. Errors (14% of trials) consisted of either early fixation breaks 
during the brief hold period (89% of the error trials) or failures to initiate the 
trial within 30 s (the remaining 11% of error trials). In either case, an error was 
followed by the presentation of a dark green square on the center of the screen 
(an error cue) and a 3-s timeout period. We defined search time as the average 
total time per trial in each patch, excluding handling time. Search time included 
the ITI, the saccade time, and any other sources of delay or variability.

Following the first choice of the blue stay rectangle in each patch, the monkey 
received 306 µl of water. On subsequent choices of the ‘stay’ target, the reward 
decreased by 19 µl (although we introduced a small variance in this amount,  
ε = s.e.m. of 1.9 µl). If the monkey continued to choose the blue stay option, its 
value would eventually reach 0 and remain 0 thereafter. On choosing the gray 
switch rectangle, the location of the blue and gray rectangles would alternate 
and the value of the blue rectangle would reset to 306 µl. On choosing the gray 
rectangle, the size of the gray rectangle and the associated travel time would reset 
to a new value, chosen from a uniform distribution between 0.5 and 10.5 s.

Rewards were not completely deterministic in this task, although the variability 
was quite small. Stochasticity came from two sources. First, there was an inherent 
variability in the reward amounts, added to keep the task engaging, and to encour-
age the monkeys to actively monitor rewards, rather than simply learn to count 
a certain number of trials. Second, there is necessarily some uncontrolled, but 
small, variability associated with the juice dispenser. We estimate that this vari-
ability is less than that generated by the variability that we deliberately added.

To plot residence time as a function of travel time (Fig. 2), we computed resi-
dence time for each patch. Residence time includes all time in patch from arrival 
to the decision to leave, and thus included handling time and search time and 
its constituents, saccade latencies, reward duration, etc. On the occasional trial 
in which the monkey chose to leave the patch immediately on the first trial, we 
assigned the residence time a value of 0 s.

The critical equation in the MVT is equation (2) from ref. 3. 

E
P g T t E

t P T
i i i T

i i
n =

× − ×
+ ×

∑
∑

( )

In this equation, En is net energy intake (the quantity to be maximized), Pi is the 
proportion of patches to be visited of a given type, gi is the assimilated energy cor-
rected for the cost of searching (assumed to be zero in this task), T is the hunting 
time (in this case, patch residence time), t is the travel time, and ET is the energy 
cost per unit time for traveling.

We adopted a simplified version of the more general situation encompassed 
by the MVT. Two simplifying assumptions are especially important. First, all 
patches are identical. Second, there is no energy cost associated with travel, only 
a time cost.

Thus, intake rate for a given patch is given by E g T
t Tn =

+
( ). According to the 

MVT, intake rate is maximized when E g T
Tn

* ( )= d
d

, where E*
n refers to reward 

intake rate when patch residence time is maximized. At this point, the marginal 
intake rate matches the average intake rate for the habitat.

Total patch residence time depends strongly on several factors that are beyond 
the control of the monkeys. These include handling time and ITI, but also the 
monkey’s own deliberation time, reaction times, saccade latency, etc. As these 
variables potentially lie outside the control of the monkeys, we assumed that they 
treat them as fixed quantities. Reward as a function of average patch residence 
time is shown in Figure 1b. Because the reward function was somewhat sto-
chastic, we used a repeated randomized algorithm to calculate rate-maximizing 
behavior. Specifically, we simulated the total reward harvested over 5,000 trials 
for each of 100 patch residence times, ranging from 0 to 75 s. To reduce any pos-
sible effects of noise, we repeated each simulation 1,000 times. We determined 
the rate-maximizing value by locating the peak of the resulting intake curve. 
This randomization process eliminates biases emanating from the variability in 
reward values.

Microelectrode recording techniques. Single electrodes (Frederick Haer) were 
lowered using a microdrive (Kopf) until the waveform of a single (1–3) neuron(s) 
was isolated. Individual action potentials were identified by standard criteria and 
isolated on a Plexon system (Plexon). Neurons were selected for study on the basis 
of the quality of isolation, and not on task-related response properties.

We approached dACC through a standard Teflon recording grid (Crist 
Instruments). dACC was identified by structural magnetic resonance images 
taken before the experiment. Neuroimaging was performed at the Center for 
Advanced Magnetic Development at DUMC, on a 3T Siemens Medical Systems 
Trio MR Imaging Instrument using 1-mm slices. We confirmed that electrodes 
were in dACC using stereotactic measurements, as well as by listening for char-
acteristic sounds of white and gray matter during recording. Our recordings were 
likely to have come from area 24, and especially the dorsal and ventral banks of 
the anterior cingulate sulcus (see Supplementary Fig. 8 for reconstructions of 
recording sites).

Prior to beginning formal experiments, we performed several exploratory 
recording sessions to map the physiological response properties of neurons 
accessible through our recording chamber. We were able to distinguish white 
from gray matter by the presence and absence of neural activity. During these 
mapping sessions, we were able to identify both the dorsoventral and mediolateral 

©
 2

01
1 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.
©

 2
01

1 
N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.



nature NEUROSCIENCEdoi:10.1038/nn.2856

extent of the cingulate sulcus. Neurons were recorded in the same animals and 
at the same grid positions as used in two previous studies examining the role of 
dACC in representing information about rewards22 and action21. It is therefore 
likely that neurons in both studies come from the same brain region. Moreover, 
as in these previous studies, we performed no pre-selection on neurons, aside 
from the natural biases in single-unit recordings toward larger and higher firing 
rate neurons21.

Analysis. PSTHs were constructed by aligning spike rasters to trial events and aver-
aging firing rates across multiple trials. Firing rates were calculated in 10-ms bins, 

but were generally analyzed in longer epochs. For display, PSTHs were smoothed 
using a 100-ms running boxcar. Neuronal activity was temporally aligned to the 
end of the saccade indicating the animal’s choice (time zero). To normalize neuro-
nal activity, we calculated the average firing rate for each neuron during a pre-trial 
epoch, defined as a 0.5-ms period beginning 0.75 s before the beginning of each 
trial. We then divided neural activity by this value for each neuron.

49.	Brainard, D.H. The Psychophysics Toolbox. Spat. Vis. 10, 433–436 (1997).
50.	Cornelissen, F.W., Peters, E. & Palmer, J. The Eyelink Toolbox: eye tracking with 

MATLAB and the Psychophysics Toolbox. Behav. Res. Methods Instrum. Comput. 34,  
613–617 (2002).
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